p Ogra a d e}) f;‘.:‘..
a p si (I nC(_‘d) £
y Apect [h' t y .
r nuaj nd h 8 ou ra
‘”mino. av 1%

e

——

T N N e e et

Ly

LIMITED WARRANTY

- Radio Shuck warrants for a period of 90 days from the. date of delivery to
customer that the computer hardware deseribed herein shall be free from defects
in material and workmanship under normal use and service. This warranty shall be
void if the computer case or cabinet s opened or if the unit is altered or modified.
During this period, if a defect should occur, the product must be retumed to a
Radio Shack store or dealer for repair. Customer’s sole and exclusive remedy in
the event of defect is expressly limited to the correction of the defect by adjust-
ment, repair or replacement at Radijo Shack’s election and sole expense, except

- there shall be no obligation to replace or repair items which by their nature are
expendable. No representation or other affirmation of fact, including but not
limited to statements regarding capacity, suitability for use, or performance of the
equipment, shall be or be deemed to be a Wamranty or representation by Radio

Shack, for any purpose, nor give rise to any liability or obligation of Radio Shack
whatsoever,

- EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, THERE ARE

NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING. BUT NOT -

LIMITED TO. ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE AND IN NO EVENT SHALL
RADIO SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDI-
RECT, SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARIS-
ING OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

1
-

' IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
“AS IS™ BASIS WITHOUT WARRANTY :

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused-or alleged 1o
be caused directly or indirectly by computer equipment or programs sold by
Radio Shack, including but not limited to any interruption of service. loss of
business or anticipatory profits or consequential damages resulting from the use
or operation of such computer or computer programs. _
NOTE: Good data processing procedure dictates that the user test the program,
run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

B R e i T

ST T Y AT ey e
[- - P - .

2Copyrisht L9758, by Rudio Shack. A Div

A . - . . R -— £y
ision of Tundy Corporation, Fi. Worth, Tesas 70102

Seiting Up tiie System ettt htetetieee ettt D S 51
Tips ois Loading Cassetie PrOZrams vouvuivuennunn... L R 1 ¥
I/General ‘informa:i(;n St ettetstiteenneena. Seteratieniteianaaaas, 1/1-8

3/input-Output Statements Ceereerann.. cetterereniesiana.. 3/1-11
“/¥rogram Statements Creseeenens terteenas crettenaneans Q/1-17
5/Smng55/1-9
6/Arrays Cereeetietiiiiiire e, 6/16
7/Arithmetic Functions ..»............'.......‘..‘ B 1
- 8/Special Features...................._,...’..................3/1-12
O/Editing v.ouvunnonoo. .. 9/16
.

IO/Expansionlnterface..............;........_.- cerens creeenens... 10/1-4

11/Saving Time and Space................ cecsencas FE TR PR § 1))

Appendfces' ! .

A/szsszSumma}y..'.A/1-16
B/ErrorCodes... B/1-3
C/Control, ASCIHI and GraphicsCodés C/1-2
D/LEVELHTRS-SOMemoryMap....................................D/1-2
E/VideoDisplayWorksheet...-..E/l
F/Derived Functions F/
G/BaseConversionTable...G/l

*

H/USCX'PI’OnglmS ..o..oovonvop.-ob’p-o.-oocooov-'o-otboo-octo-cn;ouo.qH/I'7

v
.

P e e e e e e ——— e e - w e ———

— o

Q’ Al v f.‘!"n S A\ e
G ipe T R AT
octling Un The Svsiom
9 L
.-
Carefuily unpack the system. Remove all packing material. e sure
s t i P
you locate all cables, papers, tapes, ete. Save the packing misterial in
case you need to transport the system.

Connecting the Video Display and Keyboard:
1. Connect the power cord from the Video Display to a source of
120 volts, 60 Hz AC power. Note that one prong of the AC
plug is wider than the other — the wide prong should go into the
widest slot of the AC socket.
NOTE: If you use an AC extension cord, you may not be able
to plug the Display’s power cord in. Do not attempt to
force this wide prong into the extension cord; use a
wall outlet if at all possible. ’
Connect the power cord of the Power Supply to a source of] 20
volts, 60 Hz AC power.
3. Connect the gray cable from the front of the Video Monitor to
the VIDEO jack on the back of the Keyboard Assembly, Take
- care to line up the pins correctly (the plug fits only one way).
NOTE: Before the next step, be sure the POWER switch on the
back of the Keyboard is off (button out).
4. Connect the gray cable from the Power Supply to the POWER
Jjack on the back of the Keyboard Assembly. Again, take care to
mate the connection correctly. o :

138

Connecting The Cassette Recorder:

NOTE: You do not need to connect the Cassette Recorder unless

you plan to record programs or to load taped programs into the

TRS-80.

1. Connect the CTR-4] to a source of 120 volt AC power. (Batteries
are not recommended for using Recorder with TRS-80.)

2. Connect the short cable (DIN plug on one end and 3 plugs on the
other) to the TAPE Jack on the back of the Keyboard Assembly,
Be sure you get the plug to mate correctly.

3. The 3 plugs on the other end of this cable are for connecting to
the CTR-31.

i

-

A. Conncet the biack plug into the LAR juck on the side of the

CUR=4i. This connection provides the ouiput sienal from
“the CTR- to the TRS-80 (for loading Tape programs into
the TRS-80),

B. Conncct the larger gray plug into the AUX jack on the
CTR-H. This connection provides the recording signal to
record programs from the TRS-80 onto the CTR-41’s tape.
Also, plug the Dummy Plug (provided with the CTR41)
into the MIC jack (this disconnects the built-in Mic so it
won't pick up sounds while you are loading tapes).

NOTE: Be sure you always use the Dummy Plug when saving ~

programs on tape (Recording).

=1 Dummy Plug

C. Connect the smaller gray plug into the REM jack on the
CTR-41. This allows the TRS-80 to automatically control
the CTR-41’s motor (turn tape motion on and off for
recording and playing tapes).

Notes On Using The Recorder

There are a number of things you should be aware of as you use the

Cassette Tape System:

1. To play a tape (load a taped program into the TRS-80), you must
have the CTR-417 Volume control set to middle to upper levels,
(approximately 4 to 6): Then press the CTR-41's PLAY key and
then type CLOAD on the TRS-80 and E’m this command.
This will start the tape motion. An * will appear on the top line
of the Monitor: a second * will blink, indicating the program is
loading. When loading is done, the TRS-80 will automatically
turn the CTR-41 off and flash READ Y on the screen. You are
then ready to RUN the program (type in RUN and hit).

2. Torecord a program from the TRS-80. press the CTR-41]'s
RECORD and PLAY Keys simultaneously. Then type CSAVE
followed by a one-letier “file-name™ in quotes and
this command. When the program has been recorded the TRS-80
will automatically turn the CTR-41 off and display READY on
the screen. Now you have your program on tape (it still is in the
TRS-80 also). Many computer users make a second or even a

third recording of the tape, just to be sure they have a good
recording.

3. Use the CTR41"% Tape Counter to aid you in locating programs

on tapes.

4. For best results. use Radio Shack’s special 10 minute per side

Computer Tape Casseites (especially designed for recording com-
puter programs). If you use standard audio tape casscttes, be
sure to use top quality, such as Realistic SUPERTAPE. Keep in
mind that audio cassettes have lead-ins on both ends (blue non-
magnetic iyiar material) — you can not record on the leader

L R

[= e R S,

- ——

potiion of the tape. Advance the tape past the leader vefore
recording a program. .

5. When you are not BOINE to use a CTR-4] for loading or Rcording
programs, do not leave RECORD of PLAY keys down (piess
STob).)

6. To REWIND or FAST-Forward d cassette, place Recorder in
REWIND or FAST-Forwurd, then type CLOAD and hir 5075
When tape has reached the desired position, push the Reset
button inside ihe Expansion Port access door (rear left of
TKS-80). (Instead of using this CLOAD/Reset scquence. you
could remove the REMote plug from its jack: however, repeated
insertion/removal tends to wear out any plug and 1s not
recommended.)

7. If you want to save a taped program permanently, break off the
erase protect tab on the cassette (see CTR41 Manual).

8. Do not expose recorded tapes to magnetic fiélds. Avoid placing
your tupes near the Power Supply.

9. Tocheckifa tape has a program recorded on it, you can
disconnect the plug from the EAR jack (also disconnect the
REM plug so you can control the CTR-41 with the keys) and
Play the tape; you'll hear the program material from the speaker.

- 10. For the best resuits when using a Recorder with the Computer, you
should keep the Recorder's heads and tape handling mechanism

A complete line of recorder accessories (cleaning solution, cotton-
tipped swabs, demagnetizer-casset-tes, etc.) is available at your local
Radio Shack store.

Special Note: . '

Before attempting to load a program from tape into the Computer,
be sure the cassette js rewound to a blank portion of the tape pre-
ceding the program. If you try to start the load in the middle ofa
' preceding program, you probably will get the Computer “hung up”

(in which case you’ll have to press Reset and start over).

The same rule applies when you’re using the CLOAD? command to
Compare a taped program with one stored in the Computer.

— e mmcee e

ce o mmrmes o armae

B LT

T e e et o e —

Do (e I onen = 'non

R haTel i) LA Nen ! nnm

FHS D) \jhu AN\ N
N }

m A T
L Ot toy TP ey mneas imn o
L SRSSQUI@ 4 i chpin

There are many factors which will affect the performance of g cassette
system. The most significant one is volume. Too low a volume may
cause some of the information to be missed. Too high a volume may
cause distortion and resull in the transfer of buckground noise as
valid information. Both of these situations will cause errors.

~

1)
The recommended volume settings* for loading from cassette tape are:

PRE-RECORDED

USER GENERATED RADIO SHACK
LEVEL II = 4-6 ’ 51/2-61)2
LEVEL] 7-8 71/2-81/2

If the asterisks do not appear during a load, try lowering the volume.
It is also a good idea to unplug the EARphone (black) plug and listen
for the start of the program. This will tell you exactly where the
program starts. If the asterisks appear, but one is not flashing, try
increasing the volume setting. If higher volume setting doesn’t solve
the problem, clean the head. ’

Handling Load-Errors

There is a very rare case in which only a minor error may occur in
loading a program and no error message will be printed. The best way
to check for this, is to List the program. If the program looks OK,
use the CLOAD? command to compare the tape version with the one
you loaded. If they are not exactly the same, a “BAD” message will
be printed. Such a case normally can be remedied with a minor
adjustment in the volume setting (usually a slight increase).

v

*Numbers refer to markings on the Radio Shack CTR-41 Recorder,
which run from 0 to 10 (ful] volume). For different models of
Recorders. numbers recommended may not be appropriate. Do a
little experimenting. v :

5 T res i+ ™ 6 "'.r "
1/ Gererzl Informatior i

This chapter will provide you with an overview of
LEVEL 11 BASIC — what some of its special features
are, how it differs from LEVEL 1, and generally,
what you need to get going. In addition, there's a
short glossary at the end of the chapter..

Power-Up

Connect Keyboard-Computer, Video Display and Power Supply as
explained in the previous section. Plug Video Display and Power
Supply into 120-volt AC outlets. Press POWER buttons on Video
Display and at the back of the Keyboard. Give the video tube a few
seconds to warm up.

MEMORY SIZE? — will appear on the screen. This is your chance
to protect a segment of memory so that machine-language programs
may be loaded, using a special command, SYSTEM. For normal
applications, you won’t want to protect any memory, so just press
the E='§E'!=1:(] key without typing in any numbers. This will allow
you to write BASIC programs using the full memory capacity of
your Computer (for 4K LEVEL 1] machines, that’s 3284 bytes; for
16K LEVEL 11 machines, it’s 15,572 bytes).

NOTE: In general, whenever you have typed something in via the
keyboard and you want the Computer to “act” on your input, you
must first hit the key just as you did with the Leve] [
TRS-80. There are ways to have the Computer respond as soon as
you hit a key (without), but these will be covered later.

RADIO SHACK LEVEL Ii BAsIC
READY
>—

will appear on the screen. You are now ready to use LEVEL II
BASIC. .

Operating Modes

There are four Gperating modes: Command, Execute, Edit and
Monitor. Command and Execute Modes are just like LEVEL |
BASIC. In the Command Mode, the Computer responds to
commands as soon as they are entered. This is the level you use to
write programs and perform computations directly (*“‘calculator
mode” of LEVEL I). Whenever the >~ appears on the Display,
you're in the Command Mode. . .

-

¥ 1/1

et e

—— ey 20 -t e n =

TITITT e et st n v e rem e g

— —— - - e e A sl e e wm e e e . e e ot o e
[

The Exceute Mode is wsually entered by typing RUN: tus causes

BASIC programs o be exeeuted. Unlike LEVEL I, LEVEL 1]
mitiahizes all numeric variables to zero and sets al strings to null.
when you enter the commuand RUN.

The Edit Mode 1s a real time-saving feature of LEVEL IL

It allows you to edit (alter, add to or delete) the contents of

program lines. Instead of retyping an entire program line, you

change just the part that needs changing. N
)

NOTE: Whenever Computer encounters a Syntax error during

execution, it will go into Edit Mode for that line. To get out of Edit

Mode, type Q" (without quotes).

The Monitor Mode lets you load machine language “object files”
into memory. These routines or data can then be accessed by your
BASIC programs. or they may be completely independent programs.

Special Function Keys

LEVEL 11 BASIC offers the same special function keys as LEVEL | —
plus a few extras. The function of the key depends on what mode the
Computer is in.

Command Mode:

[ENIER| Effects a carriage return; Computer “looks at” line
just typed in and acts accordingly. If line just typed in
has no line number, Computer will interpret and

~ execute the statements contained in the line. If Line
has a line number, Computer stores the line in program
memory. _
~ Backspaces the cursor and deletes last character typed
-+ in. '

SHIFT < Deletes the line you are typing in, and returns cursor
to beginning of logical line.
Y Linefeed: moves cursor down to next physical line on
the Display.
Separates BASIC statements contained on the same

logical line. to allow multi-statement lines.
E.g.. PRINT "FIRST STATEMENT":PRINT "SECOND STATEMENT"

> Moves cursor over to the next tab stop. Tab stops are
at positions 0, 8, 16, 24, 32, 40. 48 and 56.
SHIFT » Converts display to 32 character-per-line format.
CLEAR Clears the Display and returns it to 64 character-per-

line format.

X Y

k. 4

12

Exccuie Mode: -

SHIFT @ Pause; stops program exccution. Hitting ary key
causes execution to be resumed, Hitting SHIFT @ also

freezes ihe Display during a LIST so you can examine
program lines.

BREAK Stops execution. Resume execution by typing CONT.
m When Computer is awaiting input from the keyboard,

~Lil causes Computer to “look at” what you've
typed in. i

~

1

| For Edit Mode special function keys, see Chapter 9.

Variable Names

Variable names must begin with a letter (A-Z) and may be followed
by another letter or digit (0-9). So the following are all valid and
distinct variable names: .

A A2 AA AZ G9 GP M MU 2zz ZzZi
Variable names may be longer than two.characters, but only the first
two characters will be used by the computer to distinguish between
variables. For example “SUM™, “SUB™ and “SU" will be treated as
one and the same variable by LEVEL 11 BASIC.

As you can imagine, this gives you plenty of variable names to use in
LEVEL Il (in the neighborhood of 900). However, you cannot use
variable names which contain words with special meaning in the
BASIC language. For example, “XON" cannot be used as a variable
name, since it contains the BASIC keyword “ON”. The complete
list of “reserved words™ which cannot be used in variable names
appears in Appendix A of this Manual.

Variable Types

There are four types of variables in LEVELII: integer, single pre-
cision, double precision, and string variables. The first three types
are used to store numerical values with various degrees of precision;
the last type stores strings (sequences) of characters — Jetters, blanks,
nambers and special symbols — up to 255 characters long. LEVEL |
s g two string variables, AS and BS — but LEVEL Il

*o 7 you lo use any variable name for strings. simply by adding the
string declaration character, S, to the variable name. There are
declaration characters for the other variable types, too: Here's a
complete listing:

—

i v rame

e e e e e e et 0y e et -

[J

. Declaration
Vanable Type Character Examples Typical values stored
inteper (whole % “BI% -30.123,3,5001
numbers greater
than - 32769 and
less than +#32768
single precision ! ALAA! Z1! 1, --50,.123456,
(6 signiticant 353421
figures) S
double precision » A# . 22%# C» -300.12345678,
(16 significant 3.141592653589
fizures) 1.000000000000001
doubic precision D “A#=1.2345678901D+12" 1.2345678901] x 102
with scientific no-
tation (for entering
. constants or duning
output of large or
smail numbers)
string (up to S AlS,GTS. HIS “JOHN Q. DOE",
255 characters) - “WHISTLE-STOP™
“l+2=7m

The same variable name may be used for different variable types,
and the Computer will still keep them distinct, because of the type
declaration character: For example, AS, A%, A!, A# are distinct
variable names.

Variables without declaration characters are assumed to be single-
precision; this assumption can be changed with DEFine statements
(Chapter 4). ’

Arrays

Any valid variable name can be used to name an array in LEVEL 11
BASIC; and arrays are not limited to one dimension. The DIMension
statement is used to define arrays at the beginning of a program.
Depending on the variable type used, an array may contain strings,
integers. double precision values. etc. A whole chapter of this Manual
is devoted to arrays:
Examples: AS (X.Y.Z) would be a three-dimensional array
- containing string values

G3 (L.)) would be a two-dimensional array containing

numericul single-precision values

G=(1) would be a one dimensional array of double

precision values.

Arithmetic Operators
LEVEL I uses the same arithmetic operators as LEVEL I:
* (addition). — (subtraction). * (multiplication) and / (division).
And there’s a new, very handy operator: 4 (exponentiation:
243=8) ' .
For example. to compute 6*2'3: pRINT 6%2 4 (1/3)
NOTE: Some TRS-S0's generate o [character instead of the
4 arrow,

r
s,

1/4

weiationa! Operators -

9
)
These are the same as LEVEL 1. o
< (less than) > (greater than) - =(equal to)
<>(not equal to) <=(less than or equal 1v) >=(greater than or equal to)

These operators are useful both for IF . . . THEN statements and for
logical arithimetic. .
Example: 100 1IF c<=0 THEN C=127

Logical Operators ,

In LEVEL I BASIC, * and + were used to represent the logical
operators AND and OR. In LEVEL II, we don't use symbols, we

use AND and OR directly. We also have another operator, NOT.
Examples: B ,

50 IF Q=13 AND R2 =0 THEN PRINT "READY"

100 Q = (G1<0) AND (G2<L) Q = —1if both expressions are
True; otherwise Q=0

200 Q= (GI1<0) OR (G2<L) - Q = —1if either expression is
True; otherwise Q =0
" 300 Q = NOT(C>3) Q = —1if the expression is'False;
' Q.= Oifitis True
N A

400 IF NOT (P AND Q) THEN PRINT P AND Q ARE NOT BOTH EQUAL TO —1"

500 IF NOT (P OR Q) THEN PRINT "NEITHER P NOR Q EQUALS —1"

String Operators

Strings may be compared and concatenated (“strung together”) in
LEVEL II. A whole chapter of this Manual is devoted to string
manipulations. :

Symbol Meaning . Example

< precedes alphabetically A" < "B

> follows alphabetically “"JOE" > “Jim"

o= equals BS = "WIN"

<> does not equal IF AS<>BS THEN PRINT AS
<= precedes or equals IF AS<=AZS PRINT "DONE"
>= follows or equals IF L1S>="SMITH" PRINT L1$
+ concatenate the two AS = CStC1S)

strings AS ="TRS-'"+ 'go"

=

1/5

. e —————

TP TE P L T

Uraer or Operations

Opceratious in the innermost level of parentheses are performed first,
then evaluation proceeds to the next level out, ete. Operations on the

sume nesting fevel are performed according to the foilowing hierarchy:

Exponentiation: A 4B
Negation: -X

*. [(left to right)

+, — (left to right)

< >,=, <=5 = <> (left to right)

Intrinsic Functions

Most of the subroutines in the LEVEL I manual are built-in to
LEVELIL They are faster, more accurate, and much easier to use.

Graphics
Level 11 has the same SET, RESET and POINT functions as LEVEL
I for turning graphics blocks on and off and determining whether an

individual block is on or off. (There are a few differences — see
Chapter 8.)

A big feature of LEVEL I is the selectable display — either 64
characters per line or 32 characters per line (¢/I). When the machine
is turned on it is in the 64 ¢/l mode; hit SHIFT and » simultaneously
to change to 32 c¢/l. Display will return to 64 ¢/l whenever a CLS or
NEW is executed or CLEAR key is hit. You can also shift to 32 ¢/l
by executing a PRINT CHRS (23). More on this in Chapter §.

Error Messages

LEVEL I pointed out errors by printing HOW?, WHAT? or SORRY
along with the offending program line with a question mark inserted
at the point of error. LEVEL 11 gives you much moye specific
information about what type of error occurred, using a set of Error
Codes (sce Appendix). The offending program line is also pointed
out, butit’s up to you to locate the error in the line.

1/6

r—-- — - e e e e —— -—-

Abbreviations :

Very few abbreviations ate allowed in LEVEL 11 Ex-LEVEL I users
will have to forget about R., L., P., etc. Although LEVEL II

doesn’t allow these short-forms, it stores the programs more
efficiently than LEVEL I did, so you can still pack a lot of program
into a small amount of memory space. .

The abbreviations are:

? for PRINT, and .
! for :REM

for last line entered, listed, edited, or in which an error occurred.

Keyboard Rollover
With the LEVEL I TRS-80 (and many other computers) you have
to release one key before the Computer will allow entry of another

key. LEVEL Il lets you hit the second key before you have
released the first key. This is great for you touch typists.

1/7

e e

RAANP , ey ROMA\W AN T OTD A
GLossary lor LIEVEL ITRASIC

address a value specifying the location of a byte in memory;
decimal values are used in LEVEL 11

alphanucrics the set of letiers A-Z, the numerals 0-9, and various
punctuation marks and special characters

argument the value which s supplied to a function and then
operated on to derive a result

array anarrangement of elements in one or more dimensions

ASCIH American Standard Code for Information Interchange; in
LEVEL 11 BASIC, decimal values are used to specify ASCII codes

assembler a program that converts a symbolic-language program into
a machine-lunguage program

BASIC Beginners Ail-purpose Symbolic Instruction Code

baud signaling speed in bits per second; LEVEL 1I’s cassette interface
operates at 500 baud (500 bits per second) .

binary number a number represented in the base-two number system
using only binary digits “*0” and 1"

bit binary-digit, the smallest memory cell in a computer

byte the smallest memory unit that can be addressed in BASIC,
consisting of 8 consecutive bits

decimal number a number represented in the base-ten number system
using the digits 0-9 ’

expression a combination of one Or more operations, constants and
variables

file an organized collection of related data

hexadecimal number 2 number represented in the base-16 number"
system using the digits 0-9 plusA,B,C,D,E, F

intrinsic function a function (usually a complicated function) that
may be “built-in” to the Computer’s ROM and may be used
directly in a BASIC statement

logical expression an expression which is either True or False:
if True, =1 is returned: if False, 0 is returned

machine language the language used directly by the Computer,
written as binary-coded instructions '

port one of 256 channels through which data can be input to or
output from the Computer

RAM Random Access Memory; memory available to the user for
writing programs and storing data

ROM Read Only Memory: memory which is permanently pro-
grammed and may be read but not written into; LEVEL II BASIC
is stored in ROM .

routine a sequence of instructjons to carry out a certain function

Statement a complete instruction in BASIC

string a sequence of alphanumeric characters ranging in length from
zero (the “null” string) to 255 '

subroutine a sequence of instructions for performing a desired
function: may be accessed many times from various points in a
program

variable o quantity that can take on any of a given set of values

variable name the lube) by which a given variable is addressed

~

|-

1/8

F T e e e e e ————— — —— e e e e v

e e e e ey

DI e PR enan el e "«
dod | N vt b o) .

Whenever wprompt > s dispiayed, your Compuicer

is 1 the Command Mode. You can type in a command,
ST it and the Computer will respond immediately.
This chapter describes the commands you’ll use to)
controi the Computer — to change modes, begin input
and output procedures, alter program megmory, etc.

All of these commands — except CONT — may also be
used inside your program as statements. In some cases
this is useful; other times it is Just for very specialized
applications.

The commands described in this chapter are:

AUTO CONT EDIT . SYSTEM
CLEAR CSAVE LIST * TROFF
CLOAD ' DELETE NEW TRON
CLOAD? RUN

AUTO line number, increment

Turns on an automatic line numbering function for convenient entry
of programs — all you have to do is enter the actual program ’
statements. You can specify a beginning line number and an increment
to be used between line numbers. Or you can simply type AUTO and
hit {77 | in which case line numbering will begin at 10 and use
increments of 10. Each time you hit ENNTED L the Computer will
advance to the next line number. '

Examples: o | to use line numbers
AUTO _ 10, 20, 30, ...
AUTO 5,5 5,10,15,...
AUTO 100 100, 110, 120,...
AUTO 100,25 100, 125, 150, ...

To turn off the AUTO function, hit the BREAK key. (Note: When
AUTO brings up a line number which is already being used, an asterisk
will appear beside the line number. If you do not wish to re-program
the line, hit the BREAK key to turn off AUTO function.)

-

2/1

d

e —— ——————— .

~
[

DA IR A TN
LLL'JI\-.\ i

When used without an digument (e.g., type CLEAR and hit),

this command resets ail numeric variables to zero, and all string
variabies 1o nuli. When used witly anargument (c.p., CLEAR 100),
this command performs a second function in addition to the one
Just described: it mukes the specitied number of bytes available
for string storage. .

Exampie: CLEAR 100 makes 100 bytes available for strings. When
you turn on the Computer a CLEAR 50 js executed automatically.

LOAD “file name”

Lets you load a BASIC program stored on cassette. Place
recorder/player in Play mode (be sure the proper connections are
riade and cassette tape has been re-wound to proper position).

NOTE: In LEVEL II, CLOAD and CSAVE operate at a transfer
rate of 500 baud. This is twice as fast as LEVEL I's cassette transfer
rate. Therefore the Volume setting used during CLOAD should be
correspondingly lower. For example, if you’re using Radio Shack’s
CTR-41 Cassette Recorder, try a setting of between 4 and 6 on the
Volume control when loading programs or data you placed on the
tape. For loading pre-recorded programs, a higher Volume level may
be required. Do a little experimenting. ’

L

Entering CLOAD will turn on the cassette machine and load the
first program encountered. LEVEL II also lets you specify a desired
“file” in your CLOAD command. For example, CLOAD “A” will
cause the Computer to ignore programs on the cassette until

it comes to one labeled “A”. So no matter where file “A” s
located on the tape, you can start at the beginning of the tape;

file “A™ wiil be picked out of all the files on the tape and loaded.
As the Computer s searching for file “A”, the names of the files

encountered will appear in the upper right comer of the Display,
along with a blinking **”,

Only the first character of the file name is used by the Computer for
CLOAD, CLOAD?, and CSAVE operations.

Loading a program from tape automatically clears out the
previously stored program. See also CSAVE,

CLOAD? “file name”

Lets you compare a program stored on cassette with one presently
in the Computer. This is useful when you have dumped a program
onto tape (using CSAVE) and you wish to check that the transfer
was successful. If you Jabeled the file when you CSAVE(J it, you
may specify CLOAD? “file-name ™, Otherwise, if you don’t specify
-a file-name, the first program encountered will be tested. During
CLOAD?, the program on tape and the program in memory are

e ——y

e

L J

b 2/2

| . e

compared byte tor byte. If there are any diserepancies Gudicating
a bad dump), the message “BAD™ will be displayed. In this case,
you should CSAVF tiie program again. (CLOAD?, unlikc"(,’LOAD,
dovs not erase the program memory.) ¥

CONT

When program execution has been stopped (by the BRIFAK key or
by a STOP statement in the prograu), type CONT and

lo continue execution at the point where the stop or break oceurred,
Duying such a break or $1op in execution, you may examine variable
values (using PRINT) or change these values. Then type CONT and

ELFTT and execution will continue with the current variable values,

CONT, when used with STOP and the BREAK key, is primarily a
debugging tool.

NOTE: You cannot use CONT after EDITing your program lines
or otherwise changing your program. CONT is also invalid after
execution has ended normally. ‘

See also STOP,

CSAVE “file name”

Stores the resident program on cassette tape. (Cassette recorder
must be properly connected, cassette loaded, and in the Record
mode, before you enter the CSAVE command.) You must specify
a file-name with this command. This file-name may be any alpha-
numeric character other than double-qubtes ("’). The program
stored on tape will then bear the specified file-name, so that it can
be located by a CLOAD command which asks for that particular
file-name. You should always write the appropriate file-names on
the cassette case for later reference.

Examples: i _
CSAVE "1" dumps resident program and attaches Jabe] **1”
CSAVE "A" dumps resident program and attaches label “A”

See also CLOAD.

DELETE line number-line number

Erases program lines from memory. You may specify an individual
line or a sequence of lines, as follows:

DELETE line number erases one line as specified

DELETE line number-line number erases all program lines starting
with first line number specified
and ending with last number
specified

DELETE-ine number erases all program lines up to
and including the specified
number

The upper line number to be deleted must be a currently used number.

14
f.

' 2/3

T et e o s ——

‘C.A-‘ re—— e o — —— ,-_.,.]

Examples:
DELETE 5 crases line 5 from memory (error if line §

not used) ' ,
DELETE 11-18 erases lines 11, 18 and every line in bctweqn

\

If you have just entered or edited a line, you may delete that line
simply.by entering DELETE. (use a period instead of the line
number),)

EDIT line number

Puts the Computer in the Edit Mode so you can modify your resident
program. The longer and more complex your programs are, the more
important EDIT will be. The Edit Mode has its own selection of
subcommands, and we have devoted Chapter 9 to the subject.

LIST line number-line number
Instructs the Computer to display all program lines presently stored

in memory. If you enter LIST without an argument, the entire
program will scroll continuously up the screen. To stop the auto-.
matic scrolling, press SHIFT and @ simultaneously. This will freeze
the display. Press any key to release the “pause” and continue the
automatic scrolling.

To examine one line at a time, specify the desired line number as

- an argument in the LIST command: To examine a certain sequence

of program lines, specify the first and last lines you wish to

examine, . ¢

Examples; !

LIST 50 displays line 50

LIST 50-150 displays line 50, 150 and everything in between

LIST 50- displays line 50 and all higher-numbered lines

LIST. displays current line (line just entered or edited)

LIST -50 displays all lines up to and including line S0

NEW —
Erases all program lines. sets numeric variables to zero and string

variables to null. It does not change the string space allocated by a

previous CLEAR number statement.

RUN line number .

Causes Computer to execute the program stored in memory. If no

line number is specified, execution begins with lowest numbered

program line. I 4 line number is specified, execution begins with

the line number. (Error occurs if you specify an unused line number.)

Whenever RUN is exccutdd, Computer also executes a CLEAR.

- -

2/4

- —— et e e g e 4 - — 2 e —— e - et e a e e e e e ¢

Examples: -

Iy
RUN cxecution begins at lowest-numbered<ine
RUN 100 exceution begins at line 100 '
RUN may be used inside a program as a statement: it is a convenient
way of starting over with a clean slate for continuous-loop programs
such as games,

SYSTEM -
Puts the Computer in the Monitor Mode, which allows you to load
object files (machine-language routines or data). Radio Shack

offers several machine-language software packages, such as the
IN-MEMORY INFORMATION SYSTEM. You can also create your
own object files using the TRS-80 EDITOR/ASSEMBLER, which

is itself an object file.

To load an object file: Type sYsTEM and [ENEi5] .

*? will be displayed. Now enter the file-name (no quotes are
necessary) and the tape will begin loading. When loading is com-
" plete, another

*?7 will be displayed. Type in a slash-symbol / followed by the
address (in decimal form) at which you wish execution to begin. Or
you may simply hit the slash-symbol and EN 7= without any
address. In this case execution will begip at the address specified by
the object file.

TROFF
Turns off the Trace function. See TRON.

TRON

Turns on a Trace function that lets you follow program-flow for
debugging and cxecution analysis. Each time the program advances -
to a new program line, that line number will be displayed inside a
pair of brackets.

For example, enter the following program:

10 PRINT "START"
20 PRINT "GOING"
30 GOTO 20

40 PRINT "GONE..

Now type in TRON, [ETF7T;] , and RUN, E07Io

<10> START '
<20> GOING

<30> <20> GOING

<30> <20> GOING

ete, o

-~ —

r M |

2/s

-

e PR T T e

LR R -

(Peess SHITFT and @ simultancously to pause exccution and freese
display. Press any Key to cantinue with execution.)
As you can see from ihie display, the program is in an infinite loop.

The numbers show you exactly what is going on. (To stop execution,

hit BREAK key.)

To turn off the Trace function, enter TROFF. TRON and TROFF

- may be used inside programs to help you tell when a given line is

executed. ‘ N

For example

50 TRON
60 X=X*3.14159
70 TROFF

might be helpful in pointing out every time line 60 is executed
(assuming execution doesn’t jump directly to 60 and bypass 50).
Each time these three lines are executed, <60> <70> will be
displayed. Without TRON, you wouldn’t know whether the program
was actuaily executing line 60. After a program is debugged, TRON
and TROFF lines can be removed.

2/6

'l:

.

?/F=mh;vr!f?'_47‘:?n:?ﬁ nnt .
o f s i w e ™\ Wik G
i M
The statements deseribed in this chapter let you
send data from Key board to Computer, Computer
to Display, and back and forth between Computer
and the Cassette interface. These will primarily be
used inside programs to input data and output ~
results and messages. , v

Statements covered in this chapter:

PRINT) INPUT

@ (PRINT modifier) DATA
.TAB (PRINT modifier) READ

USING (PRINT formatter) RESTORE
PRINT # (Output to Cassette)
INPUT # (Input to Cassette)

PRINT itemn list

Prints an item or a list of items on the Display. The items may be
either string constants (messages enclosgd in quotes), string variables,
numeric constants (numbers), variables, or expressions involving all
of the preceding items. The items to be PRINTed may be separated
by commas or semi-colons. If commas are used, the cursor]
automatically advances to the next print zone before printing the
next item. If semi-colons are used, no space is inserted between

the items printed on the Display.

Examples;

100 PRINT 25;"IS EQUAL TO": X 4 2
RUN

25 1S EQUAL TO 25

.._—.._—_-—__—........._...-.___-~-_..___-___. -

10 AS="STRING"

-—— e -

20 PRINT AS;AS,AS:" ":AS
RUN
STRINGSTRING STRING STRING

Positive numbers are printed with a leading blank (instead of a plus
sign): all numbers are printed with a truiling blank; and no blanks are
inserted before or after strings (you can insert them with quotes

as in line 20.

10 FRINT "ZONE 1'",""ZONE 2'","ZONE 3',""ZONE 4","ZONE 1 ETC"

RUN , :
ZONE 1 ZONE 2 ZONE 3 ’ ZONE 4
ZONE 1 ETC '

There are fous 16-character print zones per line.

10 PRINT "ZONE 1",,"ZONE 3" -
RUN ’ ‘
ZONE 1 : ZONE 3

The cursor moves to the next print zone each time a comma is
encountered.

10 PRINT "PRINT STATEMENT #10'";
20 PRINT "PRINT STATEMENT #20"

RUN .
PRINT STATEMENT #10 PRINT STATEMENT #20

A trailing semi-colon over-rides the cursor-return so that the next
PRINT begins where the last one left off (see line 10).

If no trailing punctuation is used with PRINT, the cursor drops down
to the beginning of the next line.

PRINT @ position, item list

Specifies exactly where printing is to begin. (AT was used in LEVEL
1 BASIC.) The @ modifier must follow PRINT immediately, and the

.location specified must be a number from 0 to 1023. Refer to the

Video Display worksheet, Appendix E, for the exact position of each
location 0-1023:

100 PRINT @ 550, "LOCATION 550"
RUN this to find out where location 550 is.

Whenever you PRINT @ on the bottom line of the Display, there is

an automatic line-feed, causing everything displayed to move up

one line. To suppress this, use a trailing semi-colon at the end of)
the statement.

Example:

100 PRINT @ 1000, 1000;

PRINT TAD (expression)

Moves the cursor to the specified position on the current line (or
on succeeding lines it you specify TAB positions greater than 63).
TAB may be used several times in a PRINT list.

The value of exprecsion must be between 0 and 255 inclusive.

r
"

3/2

we

o

— e

Example: .
c
10 PRINT TAB{5) “TABBED 5", TAB(25) "TABBED :‘,’:""

No punctuation is required after a TAB modifier.

10 PRINT TAB(X) X; TAB(X 4 2) X 4§ 2; TAB(X A 3)x 43

Numerical expressions may be used to specify a TAB position.

This makes TAB very useful for graphs of mathematical functions, ~
tables, etc. TAB cannot be used to move the cursor to the left. If
cursor is beyond the specified position, the TAB is ignored.

PRINT USING string; item list

PRINT USING — This statement allows you to specify a format for
printing string and numeric values. It can be used in many applica-
tions such as printing report headings, accounting reports, checks
... Or wherever a specific print format is required.

The PRINT USING statement uses the following format:
PRINT USING string ; value

String and value may be expressed as variables or constants. This
statement will print the expression contained in the string, inserting
the numeric value shown to the right of the semicolon as specified
by the field specifiers.

The following field specifiers may be used in the string:

This sign specifies the position of each digit located in the
numeric value. The number of # signs you use establishes the
numeric field. If the numeric field is greater than the number
of digits in the numeric value, then the unused field positions
to the left of the number will be displayed as spaces and
those to the right of the decimal point will be displayed as
Zeros. :

The decimal point can be placed anywhere in the numeric
field established by the # sign. Rounding-off will take place
when digits to the right of the decimal point are suppressed.

The comma — when placed in any position between the first
digit and the decimal point — will display a comma to the left
of every third digit as required. The comma establishes an
additional position in the field. '

** Two asterisks placed at the beginning of the field will cause all
unused positions to the left of the decimal to be filled with
asterisks. The two asterisks will establish two more positions
in the field.

r“

3/3

S e e e et e b - e m e ety —— e . .

e e it ee b cmm m o

h J

$S Two dollar signs placed at the beginning of the field wili act
as a foating dollar sign., Hml is, it will occupy the first position
preceding the number,

**S 1 these three signs are used at the beginning of the field, then
the vacunt positions to the left of the number will be filled by
the * sign and the § sign will again position itself m the first

- position preceding the number. ~
]

+ Whena + sign is placed at the beginning or end of the field, it
will be printed as specificd as a + for positive numbers or as
a — for negative numbers.

— Whena - sign is placed at the end of the field, it will cause a
' negative sign to appear after all negative numbers and will
appedar as a space {or positive numbers.

%o spaces % To speufy a string field of more than one character,
e spaces % is used. The length of the string field will be 2
plus the number of spaces between the percent signs.

! Causes the Computer to use the first string character of the
current value.

The following program will help demonstrate these format specifiers:

10 INPUT AS, A
20 PRINT USING AS:A
30 GOTO 10

RUN this program and try various specifiers and strings for AS and
various values for A. .

For Example:

RUN

TH2HEH 12,12

12.12

TRz g 1212

12.12

TexE# 121.21 ‘

% 121.21
The % sign is automatically printed if the field is not large
enough to contain the number of digits found in the numeric
value. The entire number to the left of the decimal will be
displayed preceded by this sign.

7ew. 2 12,127
+ 12,13
Note that the number was rounded to two decimal places.

E 1

.J

3/4

—— . e

T o+wE w1212
+12.12 ' <
T e R, -12.12
-12.12
T B R 1212
12.12+
T R e -12.12
12,12~ -
. T R~ 12,12 ' h
12,12 :
T BERBH - 12,12
12,12~
T Tv@a, 12.!2A
it’z
T vrmmoas, 121212
1212.12 '
T SSHm . ##, 12,12
$12.12
T R#FELEERT 12121.2
12,121.2 '
7 Uamaw g 12121.2
12,121
T #uE 1212
% 1212

Another way of using the PRINT USING statement is with the string
field specifiers **!”" and % spaces %o, ' :

Examples:

PRINT USING I string
PRINT USING " %' string

The *!” sign will allow only the first letter of the string to be printed,
The “% spaces 5" allows Spaces +2 characters to be printed. Again,
the string and specifier can be expressed as string variables. The

- following program will demonstrate this feature:

10 INPUT AS, BS
20 PRINT USING AS; BS
30 GOTO 10

and RUN it:

71, ABCDE
A

? %%, ABCDE
AB

7% %, ABCD

Multiple strings or string variables can be joined together (concatenated)
by these specifiers. The 1™ sign will allow only the first letter of each
string to be printed. For example:

10 INPUT AS, BS,.CS
20 PRINT USING "IUAS BS; CS

3/5

Ot e vt - i e

8

-y

o

And RUNILL L,

7 ABC,DEF,GHil
ADG

By using more than one *!” sign, the first letter of cach string will
be printed with spaces inserted corresponding to the spaces inserted
between the ! signs. To illustrate this feature, make the followmg
change to the last Little program:

20 PRINT USING "'l 1 I''; AS, BS, CS$
And RUN it ... '

T ABC,DEF,GHI
ADG

Spaces now appear between letters A. D and G to correspond with
these placed between the three *!” signs.
!9’

Try changing **! ! to “%%" in line 20 and run the program.

The following program demonstrates one possible use for the PRINT
USING statement.

10 CLS

20 AS ="*"Sxy uuuiy ## DOLLARS”

30 INPUT "WHAT IS YOUR FIRST NAME"; F$
40 INPUT "WHAT IS YOUR MIDDLE NAME'"; MS
50 INPUT "WHAT IS YOUR LAST NAME': LS
60 INPUT "ENTER THE AMOUNT PAYABLE"; P
70 CLS: PRINT "PAY TO THE ORDER OF '

80 PRINT USING "II 11 FS; """ MS: "'

90 PRINT LS
100 PRINT: PRINT USING AS; P

110 GOTO 110

RUN the program. Remember, to save programming time, use the
“7 sign for PRINT. Your display should look something like this:

WHAT IS YOUR FIRST NAME? JOHN

- WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE? 12345.6

PAY TO THE ORDER OF J. P. JONES

*rwaer++3512,345.60 DOLLARS

If you want to use an amount greater than 999,999 without
rounding off or going into scientitic notation, then simply add the
doubie precision sign (=) after the variable P in Lines 60 and 100.
You will then be able to use amounts up to 16 decimal places long.

h 4

i
=50

r Y

INPUT item list <,

4o
Causes Computer to stop execution until you enter the specified
number of values via the keyboard. The INPUT statement may
specify a list of string or numeric variables to be input. The items in
the list must be separated by commas.

100 INPUT X%, X1, 23, Z1

This statement calls for you to input a string—literal, a number,
another string literal, and another number, in that order. When the
statement is encountered, the Computer will display a

1

You may then enter the values all at once or one at a time. To enter
values all at once, separate them by commas. (If your string literal
includes leading blanks, colons, or commas, you must enclose the
string in quotes.) ‘ ’ :

For example, when line 100 (above) is RUN and the Computer is
waiting for your input, you could type .

JIM,50,JACK,40 {ENTERD)

The Computer will assign values as follows:

X$="JIM" X1=50 ZS="JACK" . Z1=40

il the values one at a time, the Computer will
display a
7

... indicating that more data is expected. Continue entering data
until al} the variables have been set, at which time the Computer
will advance to the next statement in your program.

Be sure to enter the correct type of value according to what is called
for by the INPUT statement. For example, you can’t input a
string-value into a numerical variable. If you try to, the Computer
will display a

7REDOQ

7

and give you another chance to enter the correct type of data value,
starting with the first value called for by the INPUT list.

NOTE: You cannot input an expression into a numerical value —
you must input a simple numerical constant. (LEVEL 1 allowed
you 1o input an expression or even a variable into a numerical
variable.)

e

——

Example:

100 INPUT X1, Yi1g
200 PRINT X1, Yis
RUN

— {youtype:] 7+3 SENRERD
7 REDO

- lyoutype:] vo ([FIITEN)

77 [you type:] “"THIS Is A COMMA:)

*]

10 THISISACOMMA:.

It was necessary to put quotes around “THIS IS A COMMA:,”
because the string contained 3 comma.

If yvou h_.____,':‘\"ﬂ;' more data elements than the INPUT statement
specifics, the Computer wil] display the message

TEXTRA IGNORED

and continue with normal execution of your program.

You can also include 3 “prompting message” in your INPUT
statement. This will make it easier to input the data correctly. The
prompting message must immediately follow “INPUT”, must be
enclosed in quotes, and must be followed by a semi-colon.

Example:

100 INPUT "ENTER YOUR NAME AND AGE (NAME,AGE)":NS.A
(RUN)

EN'I;ER YOUR NAME AND AGE (NAME.AGE)?_

DATA item list

Lets you store data inside your program to be accessed by READ
statements. The data items will be read sequentially, starting with
the first item in the first DATA statement, and ending with the last
item in the last DATA Statement. Items in a DATA Iist may be
string or numeric constants — no expressions are allowed. If your

- string values include leading blanks, colons or commas, you must

enclose these values ip quotes.

Itis important that the data typesin a DATA statement match up
with the variable typesin the corresponding READ statement.
DATA statements may appear anywhere it is convenient in g

program. Generally, they are placed consecutively, but this js not
required. ‘

'

3/8

.-~ - —- —_—

Examples:

NP

500 READ NI3 ,N2S,NI,N2
1000 DATA "SMITH, J.ROVUWILSON, T.M, "
2000 DATA 150,175

See READ, RESTORE.

READ item list e

Instructs the Computer to read a value from a DATA statement
and assign that value to the specified variable. The first time a
READ is executed, the first value in the first DATA statement
will be used; the second time, the second value in the DATA
statement will be read. When all the items in the first DATA
statement have been read, the next READ will use the first -
value in the second DATA statement; etc. (An Qut-of-Data error
occurs if there are more attempts to READ than there are
DATA items.) The foliowing program illustrates a common
application for READ/DATA statements. ‘

50 PRINT "NAME",""AGE"

100 READ NS :

110 IF NS="END" PRINT "END OF LIST'":END

120 . READ AGE

130 IF AGE < 18 PRINT NS,AGE

140 GOTO100

150 DATA ""SMITH, JOHN",30."ANDERSON.T.M.“,ZO
160 DATA "JONES, BILL",‘I5."DOE.SALLY",21

170 DATA "COLLINS.W.P.",17.END

Urecede Ho fiat Read

RUN

NAME AGE
JONES, BILL 15
COLLINS,W.P. 17

END OF LIST

READY
>

The program locates and prints all the minors’ names from the data
supplied. Note the use of an END string to allow READing lists of
unknown length,

...._..—._—_.._________.___-__———_.———._-.————_

See DATA, RESTORE

3/9

e v e e, o venn e

o

TIXIC AN T XD
IRSONERY el

Causes the next READ statemient executed to stirt over with the
first itew in the first DATA statement. This lets your program re-use
the samie DATA lines.

Example:

100 READ X :
110 RESTORE : , ~
120 READ Y

130 PRINT X,Y
140 DATA 50,60

RUN
50 B 50

READY
>

Because of the RESTORE statement, the second READ statement
starts over with the first DATA item.

See READ, DATA
PRINT #-1, item list

- Prints the values of the specified variables onto cassette tape.

(Recorder must be properly connected and set in Record mode when
this statement is executed.) The PRINT # statement must always
specify a device number. This is because the TRS-80 can actually
input/output to two cassette machines, once you’ve added the
Expansion Interface described in Chapter 10. For normal use with
just one recorder connected, the device number must be -1, eg.,
PRINT #-1 (followed by a comma and then the item list).

Example:

5 A1=—30.334:BS=""STRING-VALUE"
10 PRINT#-1,A1,BS,"THAT'S ALL"

This stores the current values of Al and BS, and also the string-literal
“THAT'S ALL". The values may be input from tape later using the
INPUT# statement. The INPUT # statement must be identical to the
PRINT = statement in terms of number and type of items in the
PRINT = /INPUT = lists. See INPUT % .

Special Note:

The values represented in item list must not exceed 255 characters
total: otherwise all characters after the first 255 will be truncated.
For exumpic, PRINT =1, A#Bx C# D# E#F# G# H%,1#,J%.AS
will probubly exceed the maximum record Iength if AS s longer
than about 7§ characters. In such a case, AS would not be recorded,
and when you try to INPUT #-1 the data, an OD (Out of Data)
error will occur. '

r
| V—

3/10

NS rf =Ly dtem st py

Inputs the specified number of valuces stored on cassette sfnd assigns
them to the specified vanable names. Like the PRINT # élutcmcnt,
INPUT=# requires that you specify a device number. (This will make
more sense when you have added the Expansion Interface dand are
using a dual cassette system. See Chapter 10.) Use Device number -1
for normal applications without the Expansion Interface. e.g.,
INPUT #-1, list.

Example:)
50 INPUT #-1,X.,PS,TS

When this statement is executed, the Computer will turn on the tape
machine, input values in the order specified, then turn off the tape
machine and advance to the next statement. If a string is encountered
when the INPUT list calls for a num ber, a bad file data error will
occur. If there are not enough data items on the tape to “fill” the
INPUT statement, an Out of Data error will occur.

* The Input list must be idenfical to the Print list that created the
taped data-block (same number and type of variables in the same
sequence.)

-Sample Program >

Use the two-line program supplied in the PRINT # description

to create a short data file. Then rewind the tape to the beginning of
the data file, make all necessary connections, and put cassette machine
in Play mode. Now run the following program.

10 INPUT#-1,A1,BS.LS

20 PRINT A1,BS,LS

30 IF LS="THAT'S ALL"END
40 GOTO 10

This program doesn’t care how long or short the data file is, so long
as:
1) the file was created by successive PRINT # statements
identical in form to line 10
2) thelast item in the last data triplet is “THAT'S ALL".

‘ 3/

S

.q vD.’" ™ - A NN -y~_~‘11'~
</ rogram Statements ¢

a.ﬂ. M da

LEVEL 11 BASIC makes several assumptions about

how to run your programs. For example:

* Variables are assumed to be single-precision (unless

you use type declaration characters — see Chapter 1,
. “Variable Types™).

* A certain amount of memory is automatically set

aside for strings and arrays — whether you use all of

it or not. :

* Execution is sequential, starting with the first

statement in your program and ending with the last.

* The statements described in this chapter let you
over-ride these assumptions, to give your programs
much more versatility and power.

NOTE: All LEVEL II statements except INPUT
and INPUT# can be used in the Command Mode as
well as in the Execute Mode.

Statements described in this chapter:

_ . ' Tests
Type Assignment & Sequence of (Conditional
Definition . Allocation -~ Execution Statements)

' DEFINT CLEAR 1t END IF
DEFSNG ‘DIM . STOP THEN
DEFDBL LET . GOTO o ELSE
DEFSTR GOsuB
ON...GOTO

ON...GOsuB

FOR-NEXT-STEP

ERROR

ON ERROR GOTO

RESUME ' 5

REM
This chapter also contains a discussion of data conversion in LEVEL
11 BASIC; this will let you predict and control the way results of
expressions, constants, etc., will be stored — as integer, single
precision or double precision.

DEFINT letter range

Variables beginning with any letter in the specified range will be
stored and treated as integers, unless a type declaration character is
added to the variable name. This lets you conserve memory, since

L

4/1

iteger values take up fess memory than other numeric types. And

wieger anihimeticos taster than single or double precision arithmetic.

However, a variable detined as integer can only tuke on values
between =32708 and t32767 inclusive.

Examples:
10 DEFINT A,I,N

After line 10, all variabies beginning with A, 1 or N will be treated

as integers. For example, A1, AA, 13 and NN will be integer variables.
However, Al#, AA=, 13= would still be double pr;c;saon variables,
because of the type declaration characters, whxch always over-ride
DEF statements.

10 DEFINT I-N

Causes variables beginning with 1, J, K. L. Mor N to be treated
as integer variables.

DEFINT may be placed anywhere in a program, but it may change
the meaning of variable references without type declaration characters.
Therefore it is normally placed at the beginning of a program.

See DEFSNG, DEFDBL, and Chapter 1, **Variable Types”’.

DEFSNG letter range

Causes any variable beginning with a letter in the specified range to
be stored and treated as single precision, unless a type declaration
character is added. Single precision variables and constants are stored
with 7 digits of precision and printed out with 6 digits of precision.
Since all numeric variables are assumed to be single precision unless
DEFined otherwise, the DEFSNG statement is primarily used to
re-define variables which have previously been defined as double
precision or integer.

Example:
100 DEFSNG I, W-2

Cuuses variables beginning with the letter I or any letter W through Z
to be treated as single precision. However, 1% would still be an
integer variable, and I+ a double precision variable, due to the use
of type declamnon characters.

See DEFINT, DEFDBL, and Chapter , “Variable Types™.

DEFDBL letter range

Causes variables beginning with any letter in the specified range to
be stored and treated as double-precision, unless a type declaration
character is added. Double precision allows 17 digits of precision: 16
digits are displayed when a double precision variable is PRINTed.

vy
e |

L

»

>
S~~~
to

1
1
i
!

Example:
10 DEFDOL S-Z, A-E 'Y

Causes variables beginning with one of the letters S througli Z or
A through E to be double precision,

DEFDBL is notmally used at the beginning of a program, because it
may change the meaning of variable references without type
declaration characters,

See’DEFINT, DEFSNG, and Chapter 1, “Variable)Types”. -

DEFSTR letter range

Causes variables beginning with one of the letters in the specified
runge to be stored and treated as strings, unless a type declaration
character is added. If you have CLEARed enough string storage
space, each string can store up to 255 characters.

Example:
10 DEFSTR L-Z

Causes variables beginning with any letter L through Z to be string
variables, unless a type declaration character is added. After line 10
is executed, the assignment L] = “WASHINGTON" will be valid.

See CLEAR n, Chapter 1, “Variable Types™, and Chapter 5.

~
CLEAR n

When used with an argument n (n can be a constant or an expression),
this statement causes the Computer to set aside » bytes for string
storage. In addition all variables are set to zero. When the TRS-80 is
turned on, 50 bytes are automatically set aside for strings.

The amount of string storage CLEARed must equal or exceed the
greatest number of characters stored in string variables during
execution; otherwise an Out of String Space error will occur.

Example:
10 CLEAR 1000
Makes 1000 bytes available for string storage,

By setting string storage to the exact amount needed, your program
can make more efficient use of memory. A program which uses no
string variables could include « CLEAR 0 statement, for example,
The CLEAR argument must be non-negative, or an error will result.

DiVI name (diml, dim2, .. - dimK) .

Lets you set the “depth” (number of elements allowed per dimen-
sion) of an array or list of arrays. 1If no DIM statement is used, a
depth of 11 (subscripts 0-10) is allowed for each dimension of each
array used. .-

Lo

4/3

o am emmes s e ———— iy

i —
Lxampie:
10 DIM A{5),B(2,3),C3{20]
Sets up a one-dimension array A with subscripted elements 0-5;
a two-dimension array B with subscripted elements 0,0 to 2,3; und
a one-dimension string array CS with subscripted elemvents 0-20.
Unless previously defined otherwise, arrays A and B will contain
single-precision values. .
DIM statements may be placed anywhere in yours program, and the
depth specifier may be a number or a numerical expression.
Example:
40 INPUT "NUMBER OF NAMES';N
50 DIM NA{N,2)
To re-dimension an array, you must first use a CLEAR statement,
cither with or without an argument. Otherwise an error will result.
Example Program:
10 AA{4)=11.5
20 DIM AA(7)
RUN
IDD ERRORIN 20
See Chapter 6, ARRAYS.
LET variable = expression
May be used when assigning values to variables. RADIO SHACK
LEVEL 11 does not require LET with assignment statements, but
you might want to use it to ensure compatibility with those
versions of BASIC that do require it.
Examples:
100 LET AS="A ROSE IS A ROSE"'
110 LET B1=1.23
120 LET X=X-21
In each case, the variable on the left side of the equals sign is
assigned the value of the constant or expression on the right side.
END
Terminates execution normally (without a BREAK message).
Some versions of BASIC require END as the last statement in a
program: with LEVEL 11 it is optional. END is primarily used to
force execution to terminate at some point other than the Jogical
end of the program. .
r 3

4/4

Examiple:
10 INPUT s1,52 £
4.

20 GOSUB 100

99 END
100 H=SQR(S1*S1 + S2*52)
110 RETURN

The END statement in line 99 prevents program control from .
“crashing” into the subroutine. Now line 100 cah only be accessed
by a branching statement such as 20 GOSUB 100.

STOP :

Interrupts execution and prints a BREAK IN line number message,
STOP is primarily a debugging aid. During the break in execution,
you can examine or change variable values. The command CONT
can then be used to re-start execution at the point where it left off.

(If the program itself is altered during a break, CONT cannot be
used.) A

Example:

10 X=RND(10) o
15 STOP
20 GOSUB 1000

RUN

BREAK IN 15
READY
o>

Suppose we want to examine what value for X is being passed to the
subroutine beginning at line 1000. During the break, we can examine
X with PRINT X. (You can delete line 15 after the program is
debugged.)

GOTO line humber

Transfers program control to the specified line number. Used alone,
GOTO line number results in an unconditional (or automatic) branch;
however, test statements may precede the GOTO to effect a con-
ditional branch. :

Example:
200 GOTO 10

When 200 is executed, control will automaticallyjun{p back to
line 10.

Y

. 4

4/5

D Y

You cun use GOTOQ 10 the Commuand Mode as an alternative to RUN,
GOT O line mender causes cnevunon 1o begin at the specifica line
number, without an automatic CLEAR. This lets you pass values
assigned 1o the Comimand Mode to variables in the Execute Mode.

See IF, THEN,ELSE.ON... GOTO.

GGSUD line number

Tramsiers progran control to the subroutine beginning at the
specified line number. When the Computer encounters a RETURN
stutement in the subroutine, it will then return control to the
statement which {ollows GOSUB. GOSUB, like GOTO may be
preceded by a test statement. See IF,THEN ,ELSE,ON... GOSUB.

Example Program:

100 GOSUB 200

110 PRINT "BACK FROM SUBROUTINE'": END
200 PRINT "EXECUTING THE SUBROUTINE"
210 RETURN

(RUN)

EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE

Control branches from line 100 to the subroutine beginning at line
200. Line 210 instructs Computer to return to the statement
immediately following GOSUB, that is, line 110.

RETURN
Ends a subroutine and returns control to statement immediately
following the most recently executed GOSUB. If RETURN is

encountered without execution of a matching GOSUB, an error will
occur. See GOSUB.

©

ON n GOTO line number, ..., line number

This is a multi-way branching statement that is controlled by a test
variable or expression. The general format for ON 7 GOTO is:
_ON cxpression GOTO Ist line number, 2nd line number, ..., Kth line number
expression must be between @ and 255 inclusive.
When ON ... GOTO is executed, first the expression is evaluated and

the integer portion ... INT(expression) ... is obtained. We'll refer
to this integer portion as J. The Computer counts over to the Jth

4/6

W e e i ———— e e e e - P— ——— —-— - ey

cleinentin the hine-number Bist, and then branches to the line number
spectiied by that ciement. I there is no Jth element (that is, if

J > Kin the general torinat above), then contial pdssgsp) the neat
statement in ihe program. -

i
-

If the test expression or number is less than zero, an error will occur.
The line-number list may contain any number of items.

For example,
100 ON M1 GOTO 150, 160, 170, 150, 180

says “Evaluate MI. I{ integer portion of MI equals 1 thengoto -
line 150;
If it equals 2, then go to 160;
If it equals 3, then go to 170;
If it equals 4, then go to 150;
If it equals 5, then go to 180;
If the integer portion of MI doesn’t equal any
of the numbers | through §, advance to the
next statement in the program.”

Sample Program Using oN n GOTO

100 INPUT "ENTER A NUMBER":;X
200 ON SGN(X)+2 GOTO 220,230,240
220 PRINT "NEGATIVE':END

230 PRINT "ZERO':END

240 PRINT "POSITIVE'":END b

" SGN(X) returas —1 for X less than zero; 0 for X equal to zero: and
+1 for X greater than 0. By adding 2, the expression takes on the
values 1, 2, and 3, depending on whether X is negative, zero, or
positive. Control then branches to the appropriate line number.

ON n GOSUDB liné number, ..., line number

Works like ON n GOTO, except control branches to one of the
subroutines specified by the line numbers in the line-number list.

Example:

100 INPUT ""CHOOSE 1, 2 OR 3';1

105 ON 1 GOSUB 200,300,400

110 END

200 PRINT “"SUBROUTINE #1":RETURN
300 PRINT "SUBROUTINE #2":RETURN
400 PRINT "SUBROUTINE #3'":RETURN

The test object n may be a numerical constant, variable or
expression. [t must have a non-negative value or an error will occur.

See ON n GOTO.

-

'
o

4/7

-

R4

~OR name =cexp VYO eap STEP exp
NEZNXT name

Opens an iterative (repetitive) loop so that a sequence of program
statements may be executed over and over a specified number of
tinies, The general form is (brackets indicate optional material):

linc = FOR cownter-variable = initial value To final value [STEP increment)

- {program statements)

.

line # NEXT [counter-variable]

In the FOR statement, initial value, final value and increment

can be constants, variables or expressions. The first time the FOR
statement is executed, these three are evaluated and the values are
saved:if the variables are changed by the loop, it will have no effect
on the loop’s operation. However, the counter variable must not be
changed or the loop will not operate normally.

The FOR-NEXT-STEP loop works as follows: the first time the FOR
statement is executed, the counter is set to the “initial value.”
Execution proceeds until a NEXT statement is encountered. At this
point, the counter is incremented by the amount specified in the
STEP increment. (If the increment has a negative value, then

the counter is actually decremented.) If STEP increment is not used,
an increment of 1 is assumed.

Then the counter is compared with the final value specified in the
FOR statement. If the counter is greater than the final value, the
loop is completed and execution continues with the statement
following the NEXT statement. (If increment was a negative
number, loop ends when counter is less than final value.) 1f the
counter has not yet exceeded the final value, control passes to
the first statement after the FOR statement. -

Example Programs:

10 FORI1=10TO | STEP —1
20 PRINT] ;
30 NEXT

RUN

10 9 8 7 6 5 4 3 2 1
READY
>

10 FORK=0TO | STEP.3
20 PRINT K;
30 NEXT

r
I

4/8

i P T e e T e e e —— . ——

RUN

0 .3 .6 .9
READY

>

Alter K=.9 s incremented by .3. K=1.2. This is greater than the
Jinal value 1, therefore loop ends without ever printing final
value, .

20 PRINT K;
30 NEXT

READY
>a

No STEP is specified, so STEP 1 is assumed After K is incremented
the first time, its value js 5. Since 5 is greater than the final value
0. the loop ends. '

20 FOR I=J TO K+1 STEP L “
25 J=0:K=0: =0
30 PRINT I
40 NEXT
RUN
35 79
READY
>

The variables and expressions in line 20 are evaluated once and these
values become constants for the FOR-NEXT-STEP loop. Changing
the variable values later has no effect on the loop.

—.____-__——__...____.__._--—._._..—_.—__.~._——-———

FOR-NEXT loops may be “nested”:

10 FORI=1TO3
20 PRINT "OUTER LOOP"

30 FOR J=1TO 2

40 PRINT * INNER Loop"

50 NEXT J '
60 NEXT

lam

4/9

R i TN

e e et e — . —

RUN

OUTER LOOP

INNER LOOP

INNER LOOP
OUTER LOOP

INNER LOOP

INNER LOOP
QUTER LOOP

INNER LOOP

INNER LOOP .
Note thut each NEXT statement specifies the appropriate counter
variabie; however, this is just a progranmimer’s convenience 1o help
keep track of the nesting order. The counter variable may be
omitted irom the NEXT statements. But if you do use the counter
variables, you must use them in the right order; i.e., the counter
variable for the innermost loop must come first.
It is also udvisable to specify the counter variable with NEXT
Statements when your program allows branching to program lines
outside the FOR-NEXT loop.

Another option with nested NEXT statements is to use a
counter variable list.

Delete line 50 from the above program and change line 60:
60 NEXT J.I

Loops may be nested 3-deep, 4-deep, etc. The only limit is the
amount of memory available.’

ERROR code

Lets you “simulate” a specified error during program execution. .
The major use of this statement is for testing an ON ERROR GOTO
routine. When the ERROR code statement is encountered, the Com-
puter will proceed exactly as if that kind of error had occurred. Refer
to Appendix B for 4 listing of error codes and their meanings.

Example Program:
100 ERROR 1

RUN

INF ERROR
READY
> -

Iis the error code for “attempt to execute NEXT statement without
a matching FOR statement™,

See ON ERROR GOTO, RESUME.

4/10

e e T T e el e e . - - ~ ———— -

ON ERROR GOTO line number .

When the Computer encounters any kind of error in you‘s".program,
it normally breaks out of execution and prints an error message.
With ON ERROR GOTO, you can set Up an error-trapping rontine
which will allow Your program to “recover” from an error and
continue, without any break in execution. Normally you have g
particulur type of error in mind when you use the ON ERROR
GOTO statement. For cxample, suppose your program performs .
some division operations and you have not ruled out the

possibility of division by zero. You might want to write a routine *
to handle a division-by-zero error, and then use ON ERROR GOTO
to branch to that routine when such an error occurs,

Exaniple:
5 ONERROR GOTO 100
10 Cc=1/0

In this “loaded” example, when the Computer attempts to execute
line 10, a divide-by-zero error will occur. But because of line S,

the Computer will simply ignore line 10 and branch to the error-
handling routine beginning at line 100.

NOTE: The ON ERROR GOTO must be executed before the error
occurs or it will have no effect. o

The ON ERROR GOTO statement can he disabled by executing an
ON ERROR GOTO 0. If you use this inside an error-trapping routine,
BASIC will handle the current error normally.

The error handling routine must be terminated by a RESUME
statement. See RESUME. "

RESUME line number

Terminates an error handling routine by specifying where
normal execution is to resume,

RESUME without a line number and RESUME 0 cause the Com-
puter to return to the statement in which the error occurred,

RESUME followed by a line number causes the Computer to
branch to the specified line number,

RESUME NEXT causes the Computer to branch to the statement
following the point at which the error occurred.

Sample Program with an Error Handling Routine

5 ONERROR GOTO 100

10 INPUT “SEEKING SQUARE ROOT OF'";x
20 PRINT SQR(X)

30 GoTo 10

100 PRINT "IMAGINARY ROOT: " SQR(~X);"*"
110 RESUME 10

s

4/11

ARAEs il .

‘m;-l

FY ISR

IR SN

EREPN

R SEL

- et e . -
[V, e P

RUN the progiam and try inputting a negative valae.

2.0
AN alivid
Instructs the Computer to ignore the rest of the program line. This
atlows you to inseri cominents (REMarks) into your program for
documentation. Then, when you (or somceone else) look at a
Iisting of your program, it'll be a lot casier to figure out. If REM is
used ina multi-statement program line, 1t must be the lust state-
ment.
Examples Program:

~

10 REM ** THIS REMARK INTRODUCES THE PROGRAM **
20 REM ** AND POSSIBLY THE PROGRAMMER, TOO. e

30 REM ** bl
40 REM ** THIS REMARK EXPLAINS WHAT THE * ¥
50 REM ** VARIOUS VARIABLES REPRESENT: . >
60 REM **C = CIRCUMFERENCE R = RADIUS *
70 REM ** D = DIAMETER *E
80 REM

90 INPUT "RADIUS'";R : REM THIS IS FIRST EXECUTABLE LINE

The above program shows some of the graphic possibilities of REM
statements. Any alphanumeric character may be included in a REM
statement, and the maximum length is the same as that of other
statements: 255 characters total. :

IN LEVEL Il BASIC, an apostrophe (SHIFT 7) may be used as
an abbreviation for :REM.

100 ' THIS TOO IS A REMARK
IF true/false expression action-clause

Instructs the Computer to test the following logical or relational
expression. 1f the expression is True, control will proceed to the
“action” clause immediately following the expression. If the
expression is False, control will jump to the matching ELSE state-
ment (if there is one) or down to the next program line.

In numerical terms, if the expression has a non-zero value, it is
always equivalent to a logical True.

Examples:
100 IF X >127 PRINT "OUT OF RANGE': END
If X is greater than 127, control will pass to the PRINT statement

and then to the END statement. But if X is not greater than 127,
control will jump down to the next line in the program, skipping the o

C PRINT and END statements.

100 IF 0<=X AND X<=90 THEN Y=X+180

If both expressions are True then Y will be assigned the value X+180.
Otherwise contro) will pass directly to the next program line, skipping
the THEN clause.

| A e d

| LR P

NOTL: THEN s optional in the above and similar statements. Hows-
ever, THEN s sometimes required to eliminate an ambigui}y. For
CNulple, S001F V=M THEN M=0 won't work without TL}”EN.

500 INPUT AS: IF AS="YES" THEN 100
600 INPUT AS: IF AS="YES" GOTO 100

The two statements have the same effect. THEN is not optional in
line 500 and other 1F expression THEN line number statements.

100" IF A>0 AND B>0 PRINT "BOTH POSITIVE" ‘\

)
The test expression may be composed of several relational expressions
joined by logical operators AND and OR.

Sce THEN, ELSE.

TIIEN statement or line number

Initiates the *““action clause” of an IF-THEN type statemeént. THEN
is optional except when it is used to specify a branch to another

line number, asin IF A<0 THEN 100. THEN should also be used in
IF-THEN-ELSE statements.

ELSE statement or line number”®

Used after IF to specify an alternative action in case the IF test fails.
(When no ELSE statement is used, control falls through to the next
program line after a test fails.) ’

Examples:
100 INPUT AS: IF AS="YES" THEN 300 ELSE END

Inline 100, if AS equals “YES” then the program branches to line
300. But if AS does not equal “YES”, program skips over to the
ELSE statement which then instructs the Computer to end execution.

200 IF A<B PRINT"A<B"ELSE PRINT "B<=A"

If Ais less than B. the Computer prints that fact. and then proceeds
down to the next program line, skipping the ELSE statement.

If Ais not less thun B, Computer jumps directly to the ELSE state-
ment and prints the specified message. Then control passes to the
next statement in the program.

200 IF A>.001 THEN B=1/A: A =A/5: ELSE 260

A >.001 is True, then the next two statements will be exccuted,
assigning new values to B and A. Then the program will drop down
to the next line, skipping the ELSE statement. But irA>.001 is

r
[Yooy b

3/13

vl

PECT - VIO

[TN

NI TN NPT TN R0« WIS PA S B IR

adabifde

o . A e At ———— A E_ o bn = - a—

C——— o

B s

Pualse, the program jumps ditectly over to ihe FLSU <tatement,
witiell e mstiudis it o braneh to line 260, Note that GOTO is
not required alter ELSE.

TE-THEN-LLSE statements may be nested, but you have to tuxe '
care to match up the 1Fs and ELSLs.

10 INPUT "ENTER TWO NUMBERS'';A,B
20 IF A< =B THEN IF A<B PRINT A:ELSE PRINT "NEITHER":ELSE PRINT B;
30 PRINT'"IS SMALLER" '

~

i
RUN the program, inputting various pairs of numbers. The program
picks out and prints the smaller of any two numbers you enter.
Note that the THEN statements and the colons may be omitted
from line 20. - ’

Data Conversion

Every number used during execution must be typed as either

integer, single precision or double precision. Often this typing involves
converting a number from one form to another. This may produce
unexpected, confusing results — unless you understand the rules
governing such automatic typing and type conversion.

Type Conversion

Constants are the actual numbers (not the variable names) used by
LEVEL II BASIC during execution. They may appear in your
program (as in X=1/3, the right side of the equation) or they may be
temporary (intermediate) constants created during the evaluation of
an expression. In any case, the following rules determine how a
constunt is typed:

. If a constant contains 8 or more digits, or if D is used in the
exponent, that number is stored as double precision. Adding
a = declaration character also forces a constant to be stored
as double precision.

1. If the number is not double-precision, and if it is outside the
range —32768 to +32767 or if it contains a decimal point,
then the number is stored as single-precision. 1f number is
expressed in exponential notation with E preceding the exponent,
the number is single precision.
1. If neither I nor 11 is true of the constant, then it is stored as
ninteger.

Example Program:

10 PRINT 1.234567, 1.2345678 ,
RUN
1.23457 1.2345678
READY
>
4114

P e e e

The first constant contains 7 digits; so by Rules I and I, it.occomes
a single-precision number. Single precision numbers are pripted as

6 digits with the least significant digit properly rounded. But the
second constant contains 8 digits, therefore by Rule it becomes a
double precision number, stored internally as 1.2345678000000000.
The number is printed out with all eight significant digits showing,
and all the trailing zeros suppressed.

Typing of Constants ;

When operations are performed on one or two numbers, the result
must be typed as integer, double or single-precision.

When a +, —, or * operation is performed, the result will have the
same degree of precision as the most precise operand. For example,
if one operand is single-precision, and the other double-precision,
the result will be double precision. Only when both operands are
integers will a result be integer. If the result of an integer *, —, or +
operation is outside the integer range, the operation will be done in
single precision and the result stored as single precision.

Division follows the same rules as +, * and —, except that it is never
done at the integer level: when both operators are integers, the
operation is done in single precision with a single-precision result.

v
During a compare operation (<, >,=,etc.) the operands are converted
to the same type before they are compared. The less precise type
will always be converted to the more precise type.

If you are using logical operators for bit manipulations or Boolean
operations (see Chapter 8, *'Logical Operators™), you'll need to
read the next paragraph; otherwise, skip it.

The logical operators AND, OR and NOT first convert their operands
to integer form. If one of the operands is outside the allowable range
for integers (—32768 to +32767) an overflow error occurs. The result
of a logical operation is always an integer.

Effects of Type Conversions on Accuracy

When a number is converted to integer type, it is “‘rounded down™;
i.c., the largest integer which is not greater than the number is used.
(This is the same thing that happens when the INT function is applied
to the number.) .

When a number is converted from double to single precision, it is
“4/5 rounded” (the least significant digit is rounded up il the
fractional part > =5, Otherwise it is left unchanged).

4/15

In the tollowing examples, Keep in mind that single precision variabices
are stored with 7 digils of precision, but printed out with 6 digits

(to allow for proper rounding). Similarly, double precision values are
stored with 17 digits but printed out with only 16.

Example Programs:

10 A==1,6666666666666667

20 Bl!=A=

30. C%=Aw#

40 PRINT BI,C%

RUN '

1.66667 1
READY
Do

When a single precision number is converied to double precision,
only the seven most significant digits will be accurate. And if the single
precision number didn't contain seven significant digits, watch out!

Examples:

10 Al=1.3
20 z=Al
30 PRINT A#

RUN

1.299999952316284

READY
>—

10 Ax=2/3
20 PRINT A%

RUN

.6666666865348816

READY
>

2/3 is converted to a single precision constant: therefore only the
first seven digits of A= are accurate.

e e e e v M . A e e e e e Gem Y ST e A S e Gmn e Swe A S e e

10 A=x=2/3#
20 PRINT A=

RUN

.66666666666666667
READY
>

r

4/16

o o————— e = =TT T e r———— e e moe e _.,.,..-..___.A_,_.-....,____,,-.._

IR L e

—an o —M--———MMMMM

Since e C\'prc.\s'mn MREN evaluated as @ Jouble prccision constant,
all 10 Jdigits of A= aie acourate, with the jeast slgni‘f}c:u‘.g’pxupen‘.y
4/5- rounded. S

o

Whet assigning 3 constant value 104 double precision variable, be
sure 10 include as many significant digits as possible (up to 17).

I your constant has seven or less significant digits, you might as well
use single precision.

Examples: : : .

10 Pl$=3.1415926535897932
20 E#=2.7\828\8285590452

417

5 /s irinog
o\ Ve hui YD
O

“Without stiing-handling capabilitics, a compul&;is
justasuper-powered caleulator.” There's an eleient
of truth in that exaggeration: the more you use the
string capabilitics of LEVEL 1, the truer the state-
ment will seem.

LEVEL I BASIC offered two string variables which
could be input and output to make your programs

. look "friendly™ (as in HELLO, BOB!). In LEVEL I
you can do much more than that. First of all, you’re
not iimited to two strings — any valid variable name
cun be used to contain string values, by the DEFSTR
statement or by adding a type declaration character
to the name. And each string can contain up to 255
characters.

Morcover, vou can compare strings in LEVEL 11, to
alphabetize them, for example. You can take strings
apart and string them together (concatenate them).
For background material to this chapter, see Chapter
1, “Variable Types” and “Glossary”, and Chapter 4,
DEFSTR.

Subjects and functions covered in this.._chapt‘er:

“String Input/Output” FRE (string) =~ MiDs
Ing Inp . _ 4
“String Comparisons” ~ . INKEYS RIGHTS
. & p -
*String Operations” LEN STRS
ASC LEFTS - STRINGS
CHRS ’ VAL

H

String Input/Cutnut

String constants —sequences of alphanumeric characters — may be
input to a program just as numeric constants are input, using INPUT,
READ/DATA. and INPUT # (input from cassette). They may
generally be input without quotes:

10 INPUT "YES OR NO";RS.
20 IF RS="YES"PRINT"THAT'S BEING POSITIVEI'":END
30 PRINT "WHY NOT?"

RUN

YES OR NO7_[you type] YES

THAT'S BEING POSITIVE!
READY
>

INSTRING Subroutine

,

P

[YLP ST OUTR S AN

Tateal b

I

P X S IO TR W T AW

sdeie

s

4 KM

A

st

I SN SER S NN

RV SV S WY

However, to input a stning constant whivh conimins cowitnas, colons,

or leading blanks, the string must be eonciosed in Guoies.
10 INPUT “"LAST NAME, FIRST NAME" NS
20 PRINT NS '

RUN

LAST NAME, FIRST NAME? _ [you type:] "SMITH, JOHN"
IBALTEEE .

SMITH, JOHN . -
READY !
> .

The same rule regarding commas, colons and leading blanks applies
to values input viu DATA statements and INPUT # statements.

10 READ TS, NS, DS
20 PRINT TS;NS:DS

30 DATA"TOTAL IS: ","ONE THOUSAND, TWO HUNDRED "
40 DATA DOLLARS. ’

TS requires quotes because of the colon;
NS requires quotes because of the comma.

String Comparisons

Strings may be compared for equality or alphabetic precedence.
When they are checked for equality, every character, including any
leading or trailing blanks, must be the same or the test fails.

600 IF ZS="END"THENGS999

Strings'are compared character-for-character {rom left to right.
Actually the ASCII codes for the characters are compared, and the
character with the lower code number is considered to precede the
other character. (See Appendix C, ASCII Codes.)

For example, the constant “*A!” precedes the constant “A#"’,
because *!"" (ASCII code: decimal 33) precedes “*#™ (ASCII code:
decimal 35). When strings of differing lengths are compared, the
shorter string is precedent if its characters are the same as those in
the longer string. For example, “A” precedes “A ™,

The following relational symbols may be used to compare strings;

= <> < <= > >=

Note: Whenever a string constant is used in a comparison expression
or an assignment statement, the constant must be enclosed in quotes:

AS="CONSTANT"
IF AS = "CONSTANT" PRINT AS

(The quotes are required in both cases.)

i

..d

5/2

pree
[

e SR PSP |

]

v e “ £t .

Wig Uperaiions :
T -

Not inciuding the functions described below, thedd is only one string

operation — concatenation, represented by the plus symbol +.
Example Programs:

1" CLEAR 75

20 AS="A ROSE"

30 BS3="IS A ROSE" .
40 CS=AS+BS+BS+BS+"." : ~
50 PRINTCS 4

RUN

A ROSE IS A ROSE IS A ROSE IS A ROSE.
READY
>

In line 40, the strings are concatenated — strung together.

10 TS="100"
20 SUBS="5"
30 CODES="32L*
40 LCS=TS+'."'+SUBS+CODES
50 PRINT LCS '
.-
RUN
100.532L
READY
>

ASC (string)

Returns the ASCII code (in decimal form) for the first character of
the specified string. The string-argument must be enclosed in
parentheses. A null-string argument will cause an error to occur.

100 PRINT ASC("A")
110 TS="AB": PRINT ASC(TS)

Lines 100 and 110 wilj print the same number.

The argument may be an expression involving string operators and
functions:

200 PRINT ASC(RIGHTS(TS, 1))

D

Refer to the ASCH Code Table, Appendix C. Note that the ASCII
code for a lower-case letter is equal to that letter's upper-case ASCII
code plus 31. So ASC may be used to convert upper-case values to

5/3

e - —— e e e - -

rF
i
¢
}
|
H

iower-case values - useful in case you have a line printer with lower-
case capabihties and the proper interfacing hardware/sottware).

ASC muay also be used to create coding/decoding procedures (see
example ut end of this chapter).

LiR$ (expression)
Performs the inverse of the ASC function: returns a one-character .
string whose character has the specified ASCIL, control or graphics .
code. The argument may be any number from 0 to 255, or any variable
expression with a value in that range. Argument must be enclosed in 7
parentheses. . o

100 PRINT CHRS(35) prints a pound-sign #

Using CHRS. you can even assign quote-marks (normally used as
string-delimiters) to strings. The ASCII code for quotes * is 34.
So AS=CHRS(34) assigns the value *' to AS.

100 AS=CHRS(34)
110 PRINT'"HE SAID, ";AS;"HELLO.";AS

RUN

HE SAID, "HELLO."
READY
>_

CHRS may also be used to display any of the 64 graphics characters.
(See Appendix C, Graphics Codes.) :

10 cLsS

20 FOR 1=129 TO 191
30 PRINT L,CHRS(1),
40 NEXT

50 GOTO 50

(RUN the program to see the various graphics characters.)

Codes 0-31 are display control codes. Instead of returning an actual
display character, they return a control character. When the control
character is PRINTed, the function is performed. For example, 23 is the
code for 32 character-per-line format: so the command, PRINT CHRS(23)
converts the display format to 32 characters per line. (Hit CLEAR, or
exccute CLS, to return to 64 character-per-line format.)

o s s o .

5/4

[

PRIV ST T R CARTE RO LV R s [P RO

bk BE 1

p——

FRE (string)

L
When used with a string variable or string constant as an argument,
returns the amount of string storage space currently available.
Argument must be enclosed in parentheses.

S00 PRINT FRE{AS), FRE(LS), FRE("Z")

All return the same value.

The string used has no significance; it is a dummy variable. See °
Chapter 4, CLEAR a1,

INKEYS

Returns a one-character string determined by an instantaneous key-
board strobe. If no key is pressed during the strobe, a null string
(length zcro) is returned. This is a very powerful function because

it lets you input values while the Computer is executing — without
using the (Z-57°77] key. The popular video games which let you
fire at will, guide a moving dot through a maze, play tennis, etc.,
may all be simulated using the INKEYS function (plus a lot of other
program logic, of course). :

Characters typed to an INKEYS are not automatically displayed on
the screen.

Because of the short duration of the strobe cycle (on the order of
microseconds) INKEY'S is invariably placed inside some sort of
loop, so that the Keyboard is scanned repeatedly.

- Example Program:

10 CLs
100 PRINT @ 540,INKEYS : GOTO 100

RUN the program; notice that the screen remains blank until the
first time you hit a key. The last key hit remains on the screen
until you hit another one. (Whenever you fail to hit a key during a
keybourd strobe, a null string, i.e., “nothing”, is PRINTed at 540.

This “nothing” has no effect on the currently displayed character
at 540.)

INKEYS may be used in sequences of loops to allow the user to
build up a longer string.

Example:

90 PRINT "ENTER THREE CHARACTERS"

100 AS=INKEYS3: IF AS=""THEN 100 ELSE PRINT AS;
110 BS=INKEYS : IF BS=""THEN 110 ELSE PRINT BS:
120 CS=INKEYS : IF CS=""THEN 120 ELSE PRINT C5:
130 DS=AS+BS+CS '

A three-character string DS can now be entered via the keyboard

without using the 2701 key.

NOTE: The statement 1F As="" compares AS to the null string.

r
[P et i B e S Y 35 At S g Y S PP T

rmid

5/5

L e s

ccancad

LEFTS (string, 1)
Returns the first 2 characters of string. The arguments must be

cnclosed in quotes. string may be a string constant or exprcssion,'
and 1 may b nuimenic expression.

Example Prograim: -~

10 -AS="TIMOTHY"

20 'BS=LEFTS(AS.3)

30 PRINTBS'-~-THAT'S SHORT FOR "™AS

RUN

TIM--THAT'S SHORT FOR TIMOTHY
READY .
>

LEN (string) _
Returns the character length of the specified string. The string
variable,expression, or constant must be enclosed in parentheses.

10 AS=""

20 BS="TOM"

30 PRINT AS,BS,BS+BS

40 PRINT LEN(AS).LEN(BS).LEN(BS+BS)

RUN
TOM . TOMTOM
0 3 6 '
READY :
>—

MIDS (string.p,n)

Returns a substring of string with length i and starting at position
p. The string name, length and starting position must be enclosed in

" parentheses. siring may be a string constant or expression, and

and p may be numeric expressions or constants. For example,
MIDS(LS.3.1) refers to a one-character string beginning with the 3rd
character of LS.

Example Program:

The first three digits of a local phone number are sometimes called
the “exchange’™ of the number. This progrum looks at a complete
phone number (area code, exchange, last four digits) and picks out
the exchange of that number. ’

10 INPUT "AREA CODE AND NUMBERS {NO HYPHENS, PLEASE
20 EXS=MIDS|(PHS, 4, 3)
30 PRINT "NUMBER IS IN THE “EXS:' EXCHANGE."

)":PHS

g/a

emae e

ISt T e e
M._W.»/wwﬂ._.ﬂ

RN arpuinent is f.',wci!"\cd for the tength 1, (he entite stiing begin-
ning at posﬁ'mn pos \clmm‘d. o

PR .

RIGIVRD (string,m)

Returns the lastn characters of string. string and n must be
cnc\oscd mn parcmhcscs. string may he a SIng constant Of variable,
and nomay be a numer'\cu\ constant OF variable. if LE}\l{srring) is
Jess than Of equal to 7t {he entire string s returned.

R\GHTS(STS,»@) etumns the last & characters of S’}’S. ~

STRS (cxprcssion)

Converts @ pumernc expression or constant to a string The pumeric
expression or constant must be enclosed in paremheses. STRS(A),
for example, returns @ string equal 10 the character representation 0
the value of A. For example, if A=58.5, then S RS(A) equals the
string 5.5, (Note that a leading plank is inserted pefore «58.5”
to allow for the sign of A). While arithmetic operations may be
performcd on A, only string operations and functions may be -

pRINT STRS(X) prints ¥ without 2 trailing blank; PRINT X

Example Program:

10 A=58.5 "¢ p=-58.5
20 PRINT STRS(A)
30 PRINT STRS(B)

Note that the leading plank is filled by the minus sign 1n STRS(B)-

STRiNG‘S (1, character o7 number)

Returns @ string composed of n characrcr-symbols. For example,
S"'ll\.\‘C;S(:}O‘“"‘) TL"L\YHS “**##* ***********i‘*‘***i‘#**i*#**".
STR\.\'("-S ig ueefulin crealing graphs. tables, etC

character €80 also be d number from 0-255: in this case, it will be
treated as 40 ASCIL, control. OF gruphics code.

5/7

== —_— — m— e ——p e aneee e smeeoee

B R i

B = = s ma e d ———
Laample:
STIGNGNS O TV retuns a stung composed of 04 g aphics blocks.
VAL (string)

Performs the inverse of the STRS function: returns the number
repiesented by the characters in a string argument. For example,

i AS=" 127 and BS=347 then VAL{AS+"."+BS3) returns the value
12.34. VAL{AS+"E"+BS) returns the value 12E34, thatis 12 x 1034,

VAL operates a little differently on mixed strings — strings whose
values consist of a number foliowed by alphanumeric characters.

In such cases, only the leading number is used in determining VAL;
the alphanumeric remainder is ignored.

For example: VAL (100 DOLLARS™) returns 100.

This can be a handy short-cut in examining addresses, for example.

Example Program:

10 REM "WHAT SIDE OF THE STREET?"

15 REM EVEN=NORTH. ODD=SOUTH

20 INPUT "ADDRESS: NUMBER AND STREET"; ADS
30 C=INT(VAL{ADS}/2)*2

40 IF C=VAL[{ADS)PRINT "NORTH SIDE": GOTO 20
50 PRINT "SOUTH SIDE": GOTO 20

RUN the program. entering street addresses like “1015 SEVENTH
AVE™, '

Coding/Decoding Program for Iustration Only

5 CLS: PRINT CHRS(23)

10 CLEAR 1000

20 INPUT "ENTER MESSAGE'"; MS

30 FOR K=1 TO LEN(MS)

40 TS=MIDS(MS, K, 1)

60 CD=ASC(TS)+5: IF CD>255 CD=CD-255
70 NUS=NUS + CHRS(CD)

80 NEXT

90 PRINT "THE CODED MESSAGE IS"
100 PRINT NUS

110 FOR K=1 TO LEN(NUS)

120 TS=MIDS(NUS, K. 1)

130 CD=ASC(TS}-5: IF CD<O CD=CD+255
140 OLDS=OLDS+CHRS(CD)

150 NEXT

160 PRINT "THE DECODED MESSAGE 1S" ,
§70 PRINT OLDS

RUN the program.

~

5/8

e = = -t s o e e e s s T e e e & e 1 = e P e e —

IO e ez

Lines 30-80 and 110-150 demonstrate iow you can “peet off 7 the
characicrs of a string for examination. Lines 60 and 130 demonstrate
Manipuiaiion oF AdL codes. I3

.-
4.

nsiving Subroutine

Using the intrinsic string functions MIDS and LEN, it’s casy 10
create a very handy string-handling subroutine, INSTRING. This
function tukes two string arguments and tests to see whether one is
contained in the other. When you are scarching for a particular
word, phrase or piece of datain a larger body of text or data, -
INSTRING can be very powerful. Here's the subroutine:

959 END ' THIS IS A PROTECTIVE END-BLOCK
1000 FOR I=1TO LEN{XS)-LEN{YS)+1

1010 IF YS=MIDS{XS,I,LLEN{YS)) RETURN

1020 NEXT :1=0: RETURN ’

To use the subroutine, first assign the value of the larger string (the
“search area”) to XS, and the value of the desired substring to Y3.
Then call the subroutine with GOSUB. The subroutine will return a
value of 1 which tells you the starting position of YS in the larger
string X$; or if Y3 is not a substring of XS, Iis returned with a
value of zero.

Here’s a sample program using the INSTRING subroutine. (Type in
the above lines 999-1020 plus the following.)

5 CLEAR 1000:CLS.

10 INPUT "ENTER THE LONGER STRING"; X3
20 INPUT "NOW ENTER THE SHORTER STRING™; Y$
30 GOSUB 1000

40 IF 1=0 THEN70 '

50 PRINT Y3 IS A SUBSTRING OF "iXS

55 PRINT "STARTING POSITION:":l,

60 PRINT "ENDING POSITION:"JI+LEN(Y$)-1
65 PRINT:PRINT:GOTO 10

70 PRINT Y3;" IS NOT CONTAINED IN '";X$
80 GOTO 10

RUN the program, entering the string to be searched and then the
desired substring. '

-~

5/9

[et e e s 4 he e mfen e e e e e e . ——— - — - ———y

G/ Arrays 3

An array is simply an ordered list of values.

In LEVEL 11 these values may be either numbers
or strings, depending on how the array is defined
or typed. Arrays provide a fast and organized way
of handiing large amounts of data. To illustrate the
power of arrays, this chapter traces the development
of an array to store checkbook data: check numbers,

RN

dates written, and amounts for each ciicek.

In addition, several matrix manipulation subroutines
are listed at the end of this chapter. These sequences
will let you add, multiply, transpose, and perform
other operations on arrays.

Note: Throughout this chapter, zero-subscripted
elements are generally ignored for the sake of sim-
plicity. But you should remember they are available
and should be used for the most efficient use of
memory. For example, after DIM A(4), array A
contzins § clements: A(0), A(1), A(2), A(3), A(4).

For background information on grrays, see Chapter
4, DIM, and Chapter 1, “*Arrays”.

A Check-Bock Array

Consider the following table of checkbook information:

Check # Date Written Amount
025 1-1-78 ' 10.00
026 1-5-78 39.95
027 1-7-78 23.50
028 1-7-78 - 149.50
029 1-10-78 4.90
030 1-15-78 12.49

Note that every item in the table may be specified simply by
reference to two numbers: the row number and the column number.
For example, (row 3, column 3) refers to the amount 23.50. Thus
the number pair (3,3) may be called the “'subscript address’ of the
value 23.50.

Let's set up an array, CK, to correspond to the checkbook informa-

tion table. Since the table contains 6 rows and 3 columns, array CK

will need two dimensions: one for row numbers, and one for column
numbers. We can picture the array like this:

k .

{ .

6/1

v . -

- —

I
e 1 e sl

A(1,1)=02§ A(1,2)=1.0178 A(1.3)=10.00

./\(6.1):030 A(6.2)=1.1578 A(6,3)=12.49

Notice that the date information is recorded in the form mm.ddyy..
where mum=month number, dd=day of month, and vy = last two
digits of year. Since CK is a numieric array, we can’t store the data
with aipha-numeric characters such as dashes.

Suppose we assign the appropriate values to the array elements.
Unless we have used a DIM statement, the Computer will assume
that our array requires a depth of 10 for each dimension. That is,
the Computer will set aside memory locations to hold CK(7,1),
CK(7,2), ..., CK(9,1), CK(9,2) and CK(9,3). In this case, we don’t
want to set aside this much space, so we use the DIM statement at
the beginning of our program:

10 DIMCKI(6,3) 'SETUPA6BY 3 ARRAY {(EXCL. ZERO SUBSCRIPTS)

Now let’s add program steps to read the values into the array CK:

20 FOR ROW=1TOG6

30 FOR COL=1 TO 3

40 READ CK{ROW,COL)
50 NEXT COL, ROW

90 DATA 025, 1.0178, 10.00
91 DATA 026, 1.0578, 39.95
92 DATA 027, 1.0778, 23.50
93 DATA 028, 1.0778, 149.50
94 DATA 029, 1.1078, 4.90
95 DATA 030, 1.1578, 12.49

Now that our array is set up, we can begin taking advantage of its
built-in structure. For example, suppose we want to add up all the
checks written. Add the following lines to the program:

100 FOR ROW=1TO 6

110 SUM=SUM+CK(ROW,3)

120 NEXT

130 PRINT"TOTAL OF CHECKS WRITTEN";
140 PRINT USING"SS&##.#%":SUM .

Now let’s add program steps to print out all checks that were written
on a given day.

T R R P R e

[Py

]

6/2

200 PRINT "SEEKING CHECKsS WRITTEN ON WHA'I:::—DATE (MM.DDYY)";

210 INPUT DT

230 PRINT PRINT"ANY CHECKS WRITTEN ARE LISTED BELOW:"
240 PRINT"CHECK #UTAMOUNT . PRINT

250 FOR ROW-=1 TO 6

260 IF CK{ROW,2)=DT PRINT CK(ROW.I), CK{ROW,3)
270 NEXT

It's easy to generalize our program to handle checkbook information-
lorall 12 months and for ycars other than 1978.

All we dois increase the size (or “depth™) of edch dimension as
needed. Let's assume our checkbook includes check numbers 001
through 300, and we want to store the entire checkbook record.
Just make these changes:

10 DIM CK(300,3) 'SET uUp A 300 BY 3 ARRAY
20 FOR ROW=) TO 300

and add DATA lines for check numbers 00 through 300. You’d

probably want to pack more data onto each DATA line than we did
in the above DATA lines,

And you'd change all the ROW counter final values:
. P .

100 FOR ROW=1 TO 300

250 FOR ROwW=1 70 300

Other Types of Arrays

Remember, in LEVEL II the number of dimensions an array can
have (and the size or depth of the array), is limited only by the
amount of memory available. Also remember that string arrays can
be used. For example. CS(X) would automatically be interpreted as
astring array. And if you use DEFSTR A at the beginning of your
program, any array whose name begins with A would also be a string
array. One obvious application for a string array would be to store
text material for access by a string Mmanipulation program.

10 CLEAR 1200
20 DiIm TXTs3(10)

would set up a string array capable of storing 10 lines of text,
1200 bytes were CLEARed to allow for 10 sixty-character lines,
plus 600 extry bytes for string manipulation with other string
variables,

Roave; : ey, - , o . T S e e o ke

6/3

R e P,

- . M venrens ¢
1\.“. ll'y/nuuul L LY A OAERAL J.‘.:‘.:Ou ulu}nﬂuunic

To use this subroutine, your main program must supply values for
N1 rowsyand N2 (columns).

’

30100 REM MATRIX INPUT SUBRCUTINE {2 DIMENSION)
30110 FOR I=1 TO N1

30120 PRINT "INPUT ROW"il
30130 FOR J=1 TO N2
301130 INPUT A({},J)

30160 NEXT J,i

30170 RETURN

To use this subrouline, your main program must supply values for
N1 (dim=1), N2 (dim=2) and N3(dim#3).

30200 REM MATRIX READ SUBROUTINE (3 DIMENSION)
30205 REM REQUIRES DATA STMTS.

30210 FOR K=1 TO N3

30220 FOR I=1 TO N1

30230 FOR J=1 TO N2

30240 READ A{l,J),K}

30270 NEXT J,1,K

30220 RETURN

e s e - G - e e e e e - e

Main program supplies values for N1, N2, N3, etc.

30300 REM MATRIX ZERO SUBROUTINE (3 DIMENSION)
30310 FCR K=1 TO N3

3022 FOR J=1 TO N2
30330 FOR 1=1 TO N1
30340 A(l,J,K)=0

30370 NEXT 1LJ,K
30380 RETURN

TR S A Mm e e e e e e e e e e e e e -t e An e e e G e e e e S G o= o a

Main program supplies values for N1, N2, N3.

30400 REM MATRIX PRINT SUBROUTINE (3 DIMENSION)
30410 FOR K=1 TO N3
30420 FOR I=1 TO N1

30430 FOR J=1 TO N2
30440 PRINT A(l1.J,K],
30450 NEXT J:PRINT

30460 NEXT I:PRINT
30470 NEXT K:PRINT
30480 RETURN

R ayTege—

S e

6/4

...

Main program supplics values for NI, N2, N3.

30500 REM MATRIX INPUT SUBROUTINE (3 DIMENaION)
30510 FOR K=1 TO N3 &

30520 PRINT "PAGE":K ’

30530 FOR I=1 TO N1

30540 PRINT ""INPUT ROW"';}

30550 FOR J=1 TO N2
30560 INPUT A(l1,J,K)
30570 NEXTJ

30580 NEXT I
30590 PRINT:NEXT K
30595 RETURN

Multiplication by a Single Variable: Scalar Multiplication (3 Dimensional)

30600 FORK=1 TO N3:'N3=3RD DIMENSION)
30510 FOR J=1 TO N2:'N2=2ND DIMENSION (ROWS)

30620 FOR I=1 TO N1:'N1=1ST DIMENSION (ROWS)
30630 B(1,J,K)=A(l,J,iK)*X
30640 NEXT |

30650 NEXT J
- 30660 NEXTK
- 20670 RETURN

. -Multiplies each element in MATRIX A by X and constructs matrix B

20700 FORI =1 TO N1
30710 FOR J=1 TON2
30720 B(J,1)=A(1.J)
30730 NEXTJ

30740 NEXT I

30750 RETURN

Transposes matrix A into matrix B

Matrix Addition (3 Dimensional)

30800 FOR K=1 TO N3
30810 FORJ=1TON2

30820 FOR I=1 TO N1
30830 ClLIK)=A(1,4,K)+B(1,J,K)
30840 NEXT |

30850 NEXT J
30860 NEXTK
30870 RETURN

6/5

ey

Array Eiement-wise Multiplication (3 Dimensional)
) I

30900 FOR K= 1 TO N3
30910 FOR J=1 TO N2

30920 FOR I=1 TO N1
30930 C(l.J,K)=A(l.J.K)'B(I,J.K)
30940 NEXT I

30950 NEXT J
30960 NEXT K

Multiplies each element in A times its corresponding eiement in B. <

s

..——.-.-——-——-—.-.-—-..,-....—.——-—.————..-.—_——--..——-.——.—.—

Matrix Multiplication (2 Dimensional)

40000 FOR I=1 TO N3
40010 FOR J=1 TO N2
40020 c{1,3)=0

40030 FOR K=1 TO N3 .
40040 | C(I,J)=C(1,J)+A(I',K)*B(K,l)
40050 NEXT K

40060 NEXT J

40070 NEXT

A must be an N] by N3 matrix; B must be an N3 by N2 matrix. The
resultant matrix C will be an N1 by N2 matrix. A, B, and C must be
dimensioned accordingly. I o

RN IR

A DA ey

6/6

7 N T T it T i . ™
J eI Huneiions
<
LEVEL 11 BASIC offurs 4 wide variety of intringie
(“built-in™) functions for performing arithmetic’and
special operations. The special-operation functions are
described in the next chapter.

All the common math functions described in this
chapter return single-precision values accurate to six
decimal places. ABS, FIX and INT return values
whose precision depends on the precision of the
argument. The conversion functions (CINT, CDBL,)
ete.) return values whose precision depends on the
particular function. For all the functions, the
argument must be enclosed in parentheses. The argu-
ment may be cither a numeric variable, expression or
constant. ' '
Functions described in this chapter:

. ABS Ccos INT ! SGN -
ATN ’ CSNG LOG SIN
CDBL EXP . RANDOM . SQRr
CINT FiX . RND TAN

- ADBS (x) %

Returns the absolute vajue of the argument, ABS(X)=X for X greater
than cr equal to zero, and ABS(X)==X for X less than zero.

100 IF ABS{X)< 1E-6 PRINT "TOO SMALL"

ATN (x)

Returns the arctangent (in radians) of the argument; that is, ATN(X)
returns “‘the angle whose tangent is X", To get arctangent in degrees,
multiply ATN(X) by 57.29578.

100 Y=ATN(B/C)

CD3L (x)
Returns a double-precision representation of the argument. The value

returned will contain 17 digits, but only the digits contained in the
argument will be significant.

CDBL may be useful when you want to force an operation to be
done in double-precision, even though the operands are single
precision or even integers. For example CDBL (152)/3% will return a
fraction with 17 digits of precision.

100 FOR 1%=1 TO 25 : PRINT 1/COBL(I%), : NEXT

— . e . : . .y

7/1

LY SRR

=

w

CINT (v)

Returns the largest integer not greater than the argument. For
example, CINT (1.53) returns 1 CINT(=1.5) returns =2, For the CINT
function, the argument must be in the range =32768 to + 32767.

CiNT might be used to speed up an operation involving single or
double- prumon operands without losing the precisicn of the opc.rands
(assunmiing you're only interested in an integer rcsult)

100 K%=CINT{X=#)+CINT(Y%

COS (x)

Returns the cosine of the argument (argument must be in radians).

To obtain the cosine of X when X isin degrees, use COS(X*.0174533).

100 Y=COS({X+3.3)

SNG (x)

Returns a single-precision representation of the argument. When the
argument is a double-precision value, it is returned as six significant

" digits with “*4/5 roundmn” in the least significant digit. So

CSNG(.6666666666666667) is returned as 666667,

. CSNG(.3333333333333333) is returned as .333333.

100 PRINT CSNG{A=+B=)

EXP (x)

Returns the “nafural exponential” of X, that is, X, This is the
inverse of the LOG function, so X=EXP(LOG(X)).

100 PRINT EXP({-X)

FiXx (x)

Returns a truncated representation of the argument. All digits to

the right of the decimal point are simply chopped off, so the
tesultant value is an integer. For non-negative X, FIX(X)=INT(X).
For negative values of X, FIX(X)=INT(X)+1. For example, FI1X(2.2)
returns 2. and FIX(-2.2) returns =2.

100 Y=ABS(A-FIX[A})}

This statement gives Y the value of the fractional portion of A.

7/2

-
|-

A 4

INT(x)

Returns an integer representation of the argument, using the largest
integer that is not greater than the argument. Argument’s not
limited to the range -32768 to +32767. INT(2.5) returns 2;
INT(-2.5) retums -3; and INT(1000101.23) returns 100101.

100 Z=INT{A*100+.5)/100

Gives Z the value of A rounded to two decimal places (for non-
negative A),

LOG(x)

Returns the natural logarithm of the argument, that is,
log.(argument). This is the inverse of the EXP function, so
X=LOG(EXP (X)). To find the logarithm of a number to another
base b, use the formula logp(X) = Ioge(X)/loge(b). For example,
LOG(32767)/LOG(2) returns the logarithm to base 20f32767..

100 PRINT LOG(3.3*X)

RANDOM

RANDOM is actually a complete statement rather than a function.
It reseeds the random number generator. If a program uses the RND
- function, you may want to put RANDOM at the beginning of the
- program. This will ensure that you get an unpredictable sequence of
pseudo-random numbers each time you turn on the Computer,
load the program, and run it. '
10 RANDOM
20 C=RND(6)+RND{6)

80 GOTO 20 'RANDOM NEEDS TO EXECUTE JUST ONCE :
RND(x) ' ' ' -~
Generates a pseudo-random number using the current pseudo-random ‘

“seed number” (generated internally and not accessible to user).

RND may be used to produce random numbers between 0 and I, or
random integers greater than O, depending on the argument.

RND(0) returns a single-precision value between 0 and 1.
RND(integer) returns an integer between 1 and integer inclusive
(integer must be positive and less than 32768). For example,
RND(55) returns a pseudo-random integer greater than zero and
less than §6. RND(55.5) returns a number in the same range,
because RND uses the INTeger value of the argument.

100 X=RND(2): ON X GOTO 200,300

B

7/3

YT s ey o - e
SRty e e me e eh aeeaa e . e

= s R . S SO,

T o B e Lol

T c———— > ——_— ..,

100 ON SGN{X)+2 GOTO 200,300,400

. To obtain the sine of X when X is in degrees, use SIN(X*.0174533). -

L

SGN(x)

The “sign” tunction : returns -1 for X negative, 0 for X zero, and
+] for X positive.

SIN(x) |
Returns the sine of the argument (argument must be in radians).

~

100 PRINT SIN{A*B-B) '

SQR(x)

- Retumns the sqxii{re root of the argument. SQR(X) is the same as

X 4(1/2), only faster.

100 Y=SQR({X} 2-H 4 2)

| TAN(x)

Returns the tangent of the argument (argument must be in radians).
To obtain the tangent of X when X is in degrees, use

- TAN(X*.0174533).

100 Z=TAN(2*A)

NOTE: A great many other functions may be created using the above
functions. See Appendix F, “‘Derived Functions”.

4

e

N B ,:‘ A -
viopecial Features)
: ¢
LEVEL Il BASIC offers some unusual functions'and
operations that deserve special highlighting. Some may
seccem highly specialized; as you learn more about
programming and begin to experiment with machine-
language routines, they will take on more significance.
Other functions in the chapter are of obvious benefit
and will be used often (for example, the graphics
functions). And then there are a couple of features,
INP and OUT, that will be used pnman]y 'with the
TRS-80 Expansion Interface.

Functions, statements and operators described in this chapter:

: :) Error-Routine Other Functions
Graphics: Functions: . and Statements:
SET : ERL - INP
RESET ' ERR . MEM
CLS ' , : PEEK
POINT " Logical Operators: . - POKE

' . POS
AND oUT
OR . . USR
NOT & VARPTR

| SET(x,y)

Turns on the graphics block at the location specified by the
coordinates x and y. For graphics purposes, the Display is divided
up into a 128 (horizontal) by 48 (vertical) grid. The x-coordinates
are numbered from left to right, 0 to 127. The y-coordinates are
numbered from top to bottom, O to 47. Therefore the point at
(0,0) is in the extreme upper left of the Display, while the point
at (127,47) is in the extreme lower right corner. See the Video
Display Worksheet in Appendix E.

The arguments x and ¥ may be numeric constants, variables or
expressions. They need not be integer values, because SET(x,y)
uses the INTeger portion of x and y. SET (x,y) is valid for:.

- 0<=x<128

0<‘=y<48

Examples:

100 SET(RND{128})-1,RND(48)-1)

Lights up a random point on the stplay ?

100 INPUT X,Y: SET({X,Y)
" RUN to see where the blocks are.

Ao

8/1

[

oo ey

\ESET(x, y)

Turns off a graphics block at the location specified by the coor-

dinates x and 3. This function has the same limits and parameters |
as SET(x,v).

200 RESET (X,3)

CLS , *
“Clear-Screen” ~ turns off all the graphics blocks on the Display
and moves the cursor to the upper left corner. This wipes out alpha-

numeric characters as wel] as graphics blocks. CLS is very useful
whenever you want to present an attractive Display output.

5 cLSs :
10 SET(RND(!ZB)-—‘I.RNDMB)-!)
20 GOTO 10 '

POINT(x,)

Tests whether the specified graphics block is “‘on” or “off™. If the

- block is *on” (that is, if it has been SET), then POINT returns a

binary True (-1 in LEVEL I] BASIC). If the block is “off”, POINT
returns a binary False (0 in LEVEL [] BASIC). Typically, the
POINT test is put inside an IF-THEN statement. -

100 SET(50,28): IF POINT(50.28) THEN PRINT "dN" ELSE PRINT "OFF"

This line will always print the message, “ON”, because POINT(50,28)
will return a binary True. so that execution proceeds to the THEN
clause. If the test failed, POINT would return a binary False, causing
execution to jump to the ELSE statement.

ERL

Returns the line number in which an error has occurred. This function
is primarily used inside an error-handling routine accessed by an

ON ERROR GOTO statement. If no error has occurred when ERL

is called. line number Q js returned. However, if an error has occurred
since power-up, ERL returns the line number in which the error
occurred. If error occurred in direct mode, 65535 is returned (largest
number representable in two bytes). ’

»

8/2

Example Procran using CRL

5 ON ERROR GOTO 1000 -

10 CLEAR 10 &

20 INPUT"ENTER YOUR MESSAGE'":M3 ‘
30 INPUT"NOW ENTER A NUMBER';N : N=1/N

40 REM REST OF PROGRAM BEGINS HERE

999 END

1000 iF ERL=20 THEN 1010 ELSE IF ERL=30 THEN 1020

1005 ON ERROR GOTO 0

1010 PRINT "TRY AGAIN-KEEP MESSAGE UNDER 11 CHARACTERS"
1015 RESUME 20

1020 PRINT"FORGOT TO MENTION: NUMBER MUST NOT BE ZERO"
1025 RESUME 30 ' . :

RUN the program. Try entering a long message: try entering zero
when the program asks for-a number. Note that ERL is used in line
1000 to determine where the error occurred so that appropriate
action may be taken.

'- ERR /2+1 o

Similar to ERL, except ERR returns a value related io the code of the

-.* error rather than the line in which the error occurred. Commonly used

- inside an error handling routine accessed by an ON ERROR GOTO
- statement. See Appendix B, “Error Codes.” I :

- ERR/2+1 = true error code
". (true error code —1)*2=ERR
Example Program) _ o -
10 ON ERROR GOTO 1000 - -~ - . e e
© 20 DIMA(15): I=} o
- 30 READ A{1)

40 Is(+1:GOTO 30

50 REM REST OF PROGRAM
M)

100 DATA 2,3,5,7,1,13

999 " END

- 1000 JF ERR/2+124 RESUME 50

. 1010 ON ERROR GOTO 0 ,

Note line 1000: 4 js the error code for Out of Data.

L N

8/

INP(port)

Returns a byte-value from the specificd port. The TRS 80 Expansion
Interfuce is requirted to use INP L“C(UVC])’ (with user-supplied
peripheral hardware). There are 256 ports, numbered 0-255. For
example . ' '

100 PRINT INP(50)

inputs a byte from port 50 and prints the decimal value of the byte.

~

MEM

. Returns the number of unused and unprotected bytes in memory.
This function may be used in the Command Mode to see how much
space a resident program takes up; or it may be used inside the
program to avert OM (Out of Memory) errors by allocating less string
space, DIMensioning smaller array sizes, etc. MEM requnres no.
argument, .

v Exampler -

100 IF MEM< 80 THEN 900 . .
110 DIM A[138)

Enter the command PRINT MEM (in Command Modé) to find out
the amount of memory not being used to store programs, variables,
! strings, stack, or reserved for ObJECt ﬁIes.

OUT port, value

Pl ~ Quputsa byte value to the specified port. OUT is not a function
but a statement complete in itself. It requires two arguments

: separated by a comma (no parenthesis): the port destination and
, : ' the byte value to be sent.

Example:

OUT 250,10

i

! ' sends the value 10" to port 250. Both arguments are limited to the
I : range 0-255. : ,

!

| " ‘OUT. like INP, becomes useful when you add the TRS-80 Expansion
| Interface. See INP.

| et]

i . 8/4

A M i N halates g2 o b
ARSI M S~ &

"\‘"w £ s e v

e AP 9y e
. a3 R ARy T
e ? . o . T T,

il vy e S T N

LS oy

*m“é‘ \mm)—w-&h S AL e Ve e Y]

LA T TN

st

PELK(uddress)

Returns the value stored at the specified byte address (indecimal
torm). To use this tunction, you'll need to refer to two sections of
the Appendix: the Memory Map (so you'll know where to PLEK)
and the Table of Function, ASCII and Graphics Codes (so you'll,
know what the values represent).

If you're using PLEK to examine object files, you'll also need a
microprocessor instruction set manual (one is included with the
TRS-80 Editor/Assembler Instruction Manual).

PEEK is valuable for linking machine language routines with LEVEL
11 BASIC programs. The machine language routine can store informa-
tion in a certain memory location, and PEEK may be used inside
your BASIC program to retrieve the information. For example,

A = PEEK (17999)

returns the value stored at location 17999 and assigns that value to
the variable A.

Peek may also be used to retrieve information stored with a POKE
statement. Using PEEK and POKE allows you to set up very compact,
byte-oriented storage systems. Refer to the Memory Map in the
Appendix to determine the appropriate locations for this type of
storage. See POXE, USR. C
. ' &

POXE address, value

Loads a value into a specified memory location. POKE is not a
function but a statement complete in itself. It requires two arguments:
a byte address (in decimal form) and a value. The value must be
between 0 and 255 inclusive. Refer to the Memory Map in the
Appendix to see which addresses you’d like to POKE.

To POKE (or PEEK) an address above 32767, use the following
formula: -1*(desired address — 32767) = POKE or PEEK address.

POKE is useful for LEVEL 11 graphics. Look at the Video Display
Worksheet in the Appendix. In each of the 1024 PRINT locations
there are 6 subdivisions. If we call each PRINT position a byte, then
the smaller boxes are bits. We know that there are 8 bits per byte;

so what happened to the other 27 One is used to identify the byte

as a graphics or ASCII code. The other bit is not used, The remaining
6 bits contain either an ASCII, graphics or control code.

8/5

Wovon e POKE (o turn on Lhe entie PRINT position (6 bits) at
hewowe use SET, only I bit is turned on. Therefore POKE
- abewns e tuaes {aster than SET. The following program demon- i
strates this speed. o ;

L2 S FRERFEEY

10 cLs .
20 FOR X=15360 TO 16383

30 POKE X, 191

40 _NEXT R
50 GOTO 50 _ V :

RUN the program to sce how fast the screen is “painted” white.
(191 is the code for “all bits on™. 15360 to 16383 are the Video
Display memory addresses.)

Since POKE can be used to store information anywhere in memory,

it is very important when we do our graphics to stay in the range

for display locations. If we POKE outside this range, we may store

the byte in a critical place. We could be POKEing into our pro- g
gram, or even in worse places like the stack. Indiscriminate POKEing
can be disastrous. You might have to reset or power off and start

over again. Unless you know where you are POKEing - don’t.

© . See PEEK, USR, SET, and Chapter 4, CHRS for background
¢ ... material. . . . :

. POS(x)

r:..° " Returns a number from 0 to 63 indicating the current cursor
- position on the Display. Requires a “dummy argument” (any
numeric expression). :

100 PRINT TAB(40) POS(0)

prints 40 at position 40. (Note that a blank is inserted before the
“4" to accommodate the sign; therefore the “4” js actually at position
41.) The “0” in *POS(0)” is the dummy argument, -

100 PRINT "THESE" TAB(POS(0)+5) "WORDS" TAB(POS(0}+5) "ARE";
110 PRINT TAB(POS(0)+5) "EVENLY" TAB(POS(0)+5) ""'sPACED"

RUN

- THESE WORDS ARE . EVENLY SPACED
- READY

.

l‘!

8/6

R o E RS Sy .

3 2 SR T SR L € A
----- YIRS o O s R

.

USR (v) .

Calls o machine language subroutine and passes the argl.;r@m'nl to the
sabroutine (you may not need it, in which case it is a dummy
argument). Such a subroutine could be loaded from tape, or created
by POKEing microprocessor instructions into the appropriate
memory locations. To use the USR function, you should be familiar
with the machine-language programming (as explained in the TRS-80
Editor/Assembler Instruction Manual or any 2-80 Programming -
Manual). Playing around with the USR function can be disastrous to
any programs you may have resident in the TRS-§O; sodo some
studying before you attempt to use it.

There is only one allowable USR callin LEVEL |1 BASIC. In LEVEL
I1 DISC BASIC, there will be up to 10: USRQ through USRY.

Example:
100 X=USR(N)

would cause the Computer to branch to the routine beginning at
the location POKEd into the USR(N) addresses 16526-16527.
nis also stored at 2687 as a 2-byte integer. Upon return from the
routine, the variable X would be given the value passed back from
the routine. If no value js passed, X is assigned the value of the
‘argument N,

- - N must be an integer between -32768%nd 32767.

. : Tocreate a machine language subroutine for access by USR, you

must protect an area in high memory. (See Appendix D. “Memory
Map”). First determine how many bytes your routine will require
Then subtract that number from your Computer’s highest Memory
address (depending on whether your TRS-80 has 4K or 16K bytes
of memory). The resultant number will be the address where your
protected memory should begin. Turn on the TRS-80, and answer
the MEMORY SIZE question by entering the address where
protected memory should begin. Addresses above that number wil}
now be reserved for machine language data and routines.

Load the machine language routine, using POKE or via the cassette
interface using the SYSTEM command (see Chapter 2, SYSTEM).
Then, at the point where you want your BASIC program to
branch to the machine language routine, insert a statement which
calls USR(0). For example, .

50 PRINT USR(N)

or

50 A =USR(I%)+B

A\

To pass the argument to the subroutine. the subroutine should
immediately execute a CALL OA 7F(hex) i.e., call 2687(dec).

I

8/7

There are two ways to return to your BASIC program {rom the
macime-language subroutine:
1Y I you dont wish to pass any values from the subroutine
back to the BASIC program, a machine-language RET
instruction can be used.

.

2) To return a value, load the value into the HL register pair
as a two-byte signed integer and execute a JUMP to .
location 0A9A (HEX) [2714 (DEC)]. HL will be returned .
as a signed 2-byte integer. '

The Jast thing you need to do is tell your BASIC pragram what
address to branch to in the machine language routine. This two-byte
address must be POKEd into memory locations 16526 and 16527.
POKE the least significant byte into the lower (16526) memory
location, : A

For example, if your routine begins at 32000: in hexadecimal

this is 7D00. Therefore we POKE 00 (HEX) into 16526, and :
71D (HEX) into 16527. Since POKE requires arguments in decimal
form, we use: _ -

POKE 16526.0 : POKE 16527,208
_ (208 decimal = 7D hex). »
. After you have executed the above line, when you use the USR(0). PR

function, the Computer will branch to the instruction stored at oo
32000. : ' IR

Note: locations 16526-16527 contain the address of the Illegal E
Function Call routine unless modified by POKE. :

- USR routines are automatically allocated up to 8 stack levels or
16 bytes (a high and low memory byte for each stack level). If you
need more stack space, you can save the BASIC stack pointer and
set up your own stack. However, this gets complicated: be sure you

know what you're doing. See Chapter 2, SYSTEM, and this chapter,
PEEK, POKE. . o : .

VARPTR (variable name)

Returns an address-value which will help you locate where the variable
name and its value are stored in memory. If the variable you specify has

not been assigned a value, an FC error will occur when this function
is called. :

It VARPTRUinteger variable) returns address K : !

- Address K contains the least significant byte (LSB) of 3-byle integer K
(two’s complement form), :

Address K+1 contains the most significant byte (MSB) of integer K,

|

8/8

R

. 3
If VARPTR(single precision variable) returns address K=

(KY* = LSB of value :

(K+1) = Next most sig. byte (Next MSB)
"~ (K+2) = MSB :

(K+3) = exponent of value

It VARPTR(double precision variable) returns K:
(K) © = LSB of value t

(K+1) = Next MSB ' , '
(K+...)= Next MSB :
(K+6) = MSB

(R+7) =

exponent of value

IF VARPTR(string variable) returns K:

(K) = length of string
(K+1) = LSB of string value starting address
. (K+2) = MSB of string value starting address

For single and double precision values, the number is stored in
normalized exponential form, so that a decimal is assumed before
the MSB. 128 is added to the exponent. Furthermore, the high bit
of MSB is used as a sign bit. See examples below. :

Examples:

A! =4 will be stored as follows:

4 = 10 Binary, normalized ds .1E2

So exponent of Ais 128+2 =130

MSB of A is 10000000; ' '

. however, the high bit is changed to zero since the value is positive.
So Al is stored as :

Exponent . MSB - ° Next MSB LSB
130 0 S 0 S 0

Al'= -5 will be stored as : '

Exponent MSB Next MSB LSB

128 . 128 : 0 0

* (K)o signifies “‘contents of address K"

8/9

r p|
A' =7 will be stored as
Exponent MSB Next MSB - LSB
131 96 0 0
Al=-7: v
Exponent MSB Next MSB LSB
131 224 0 0
Zero is simply stored as a zero-e‘(ponent The other bytes are
mS|gn|ﬁcant
Logical Operators , ;
In Chapter 1 we described how AND OR and NOT can be used thh
relational expressions. For example,
100 IF A=C AND NOT (B >40) THEN 60 ELSE 50
AND, OR and NOT can also be used for bit manipulation, bitwise
comparisons, and Boolean operations. In this section, we will
, explain how such operations can be implemented using LEVEL 11
-+ BASIC. However, we will not try to explain Boolean algebra,
decimal-to-binary conversions, binary arithmetic, etc. If you need
... toleamn about these subjects, Radio Shack’s Understanding Digital
- . Computers (Catalog Number 62-2027) would be a good place to .
_ start.
: 'AND, OR and NOT coﬁvert their arguments to sixteen-bit, signed
two’s-complement integers in the range -32768 to +32767. They
then perform the specified logical operation on them and return a
result within the same range. If the arguments are not in this range,
an “FC” error results.
The operations are performed in bitwise fashion; this means that
- each bit of the result is obtained by exammmg the bit in the same
position for eauh argument, ,
" The following truth tables show the logxcal re]anonshlp between
blts .
OPERATOR ARGUMENT 1 'ARGUMENT 2 RESULT
AND : '] ' 1 1
: 0 1 0
1 0 . 0
0 0 ' 0
OPERATOR ARGUMENT1 . ARGUMENT 2 RESULT
OR =~ - 1. SRS LR
' S B 0 1
.0 1 1
-0 : 0 0
| vo——— — |
8/10

A C PR s AR Y Y PR e o
ha . g B - e
T M e G e s N oo
SRR TN

e gl L

EEo s

Temey —
B i dac e o N bt

»n

OPERATOR ARGUMENT RESULT
NOT 1 “w 0

0 ' S
EXAMPLES: '

(In ali of the examples below, leading zeroes on binary numbers are
not shown.) .

63 AND 16=16 Since 63 equals binary 111111 and 16 equals bma‘y
10000, the result of the AND is bmary 10000 or 16.

15 AND 14=14 15 equals binary 1111 and 14 equals binary 1110,

5o 15 and 14 equals bmary 1110 or 14.

-1 AND 8=8 . -1 equals binary 1111111101111111 andBequaIs
- binary 1000, so the result is binary 1000 or 8
decimal.
" 4 AND 2=0 . 4 equals binary 100 and 2 equals binary 10, so the

result is binary O because none of the bits in either
argument match to give a | bit in the result.

4 CR 2=6 _ Binary 100 OR’d with bmary 10 equals bmary 110,
. .77 -or6decimal.

LY

7" '100R 10=10. Binary 1010 OR'd with bmary 1010 equals binary

1010, or IO demmal

" -1OR=-2=-1 Binary 1111111111111111 (- l)ORdthhbmary ~

TTHITTITI111110 (- ")equalsbmary
TRITLITE10110 111, or 1.

- NOT 0=-] The bit complement of bmary 0 to 16 places is six-
T teenones(l]lll]llllllll]l)or lAlsoNOT
- -1=0,
NOT X _ . 4 NOT Xis equal to ~(X+1). This fs because to form

the sixteen bit two’s complement of the number,
you take the bit (one’s) complement and add one.

NOT 1=-2 The sixteen bit complement of | is

FHTTHTDIT1111110, which is equal to ~(1+1) or

-

Taes

A typical use of the bitwise operators is to test bits set in the TRS-80"s
inport ports which reflect the state of some external device. This

requires the TRS-80 Expansion Interface.

R e T T e b st -t oo

o datic

At oo]

s Iy

Bit position 7 is the most significant bit of a byte, while position O is

‘the least significant.

For immmc suppose bit 1 of 1/0 port 5 is 0 when the door to Room
Xis closed, and 1 if the door is open. The followmg program will
prmt “Intruder Alert™ if the door is opened:

10 IF INP(S) AND 2 THEN PRI} ’T “INTRUDER ALERT”:GOTO 100
"O GOTO 10 » h :

~

See Chapter 1, “Logical Operators”.

]
4
{

8/12

“;

T A .
O/ Editing ;
LEVEL I users undoubtedly spent lots of time rétyping
long program lines, all because of a typo, or maybe just
to make a minor change. Once a line had been entered,
there was no way to alter the line — without starting
all over and retyping it.

LEVEL I’s editing features eliminate much of this ‘
extra work. In fact, it’s so easy to alter program lines, ~
you'll probably be able to do much more experiment-
ing with multi-statement lines, complex expressions,
etc.

Commands, subcommands, and special function keys described in
this chapter: : :

“AnD

EDIT L
X nc
" nSpace-Bar : nse.
" A nKe
* SHIFT & E
o
~. EDIT line number

This command puts you in the Edit Mode. You must specify which

. line you wish to edit, in one of two ways:

“EDIT line-number _ Lets you edit the specified line.
_ If line number is not in use,
or ' : an FC error occurs
EDIT. . o Lets you edit the current pro-

gram line — last line entered or
altered or in which an error has
occurred. :

"For example, type in and the following line:

100 FOR1 =1 TO 10STEP.5: PRINT 1,142,143 : NEXT

This line will be used in exercising all the Edit subcommands de-
scribed below. ' '

Now type EDIT. and hit . The Computer will display:
. ' v
100 . '

91

—
[

You are now in the Edit Mode and may begin editing line 100.

ENTER key | |
Hitting while in the Edit Mode causes the Computer to

record all the changes you've made (if any) in the current line, and
returns you to the Command Mode. . ‘

)
nSpace-bar , _
In the Edit Mode. hitting the Space-bar moves the cursor over one
space to the right and displays any character stored in the preceding
position. For example, using line 100 entered above, put the
Computer in the Edit Mode so the Display shows:

100 _

Now hit the Space-Bar. The cursor will move over one space, and
the {irst character of the program line will be displayed. If this
character was a blunk, then a blank will be displayed. Hit the Space-
Bar until you reach the first non-blank character:

Ca o 100 Fo

. %, r isdisplayed. To move over more than one space at a time, hit the
' desired number of spaces first, and then hit the space-bar. For
example, enter 5 and hit Space-bar, and the display will show some-
thing like this (may vary depending on how many blanks you-
‘inserted in the line):

100 FOR I=_

Now type 8 and hit the Space-bar. The cursor will move over
8 spaces to the right, and 8 more characters will be displayed.

n «-(Béckspace)

Moves the cursor to the left by n spaces. If no number 1 is specified,
the cursor moves back one space. When the cursor moves to the left,
all characters in its “path” are erased from the display, but they are
not deleted from the program line. For example, assuming you’ve
usced nSpace-Bar so that the Display shows:

100 FORI=1 TO 10
type 8 und hit the - key. The Display will show something like this:

100 FOR l=_ (will vary depending on number of blanks in
‘ your line 100)

| S

9/2

MW TN NG O v em - e

L SR A A A N Y e g s,

2 -Aqde Ibad

-

*.- L (List Line) o
. When the Computer is in the Edit Mode, and is not currently
-, executing one of the subcommands below, hitting L causes the

NIRRT ‘,_..-m-¢(w,y${(g»?-

1

FonotE e e
s

SHIFT 4 ' y

L
Hitting SHIFT and 4 keys together effects an escape from any of the
Insert subcommands listed below: X, I and H. After escaping from
an Insert subcommand, you'll still be in the Edit Mode, and the cursor

will remain in its current position. (Hitting is another way
to exit these Insert subcommands). :

remainder of the program line to be displayed. The cursor drops -

- down to the next line of the Display, reprints the current line

"+ number, and moves to the first position of the line. For example,
. When the Display shows . '

100 _ , . .
- hit L (without hitting key) and line 100 will be displayed:
"..-'.100 FOR l-’-‘-l‘TO 10 STEP .5 ; PRINT 1,142,143 : NEXT

'goo-

This lets you look at the line in its current form while you're doing
the editing. : o

. &
X (End of Line and Insert)

Causes the rest of the current line to be displayed, moves cursor to

" end of line, and puts Computer in the Insert subcommand mode so
-~ you'can add material to the end of the line. For example, using
- line IQO, when the Display shows '

100 _

hit X (without hitting) and the entire line will be dis-

". played; notice that the cursor now follows the last character on the
- line; _

100 FOR I=1 TO 10 STEP .5 : PRINT 1,142,143 : NEXT _

We can now add another statement to the line, or delete mate;ial
from the line by using the —< key. For example, type
* PRINT"DONE" at the end of the line. Now hit .

Il you now type LIST 100, the Display should show something
like this: ' o ’ :

100 FOR l-i TO 10 STEP .5 : PRINT I, 142,143 : NEXT: PRINT"DONE"

.

1

9/3

LD T T s

e

AL LA 25 e drddiaenh

i b i ain

1 (Insert)

Allows you to insert material beginning at the current cursor position
on the line. (Hitting = will actually delete material from the line in
this mode.) For example, type and ERE23 the EDIT 100 command,
then use the Space Bar to move over to the decimal point in line 100.
The Display will show:

100 FOR I=1 TO 10 STEP ..

Suppose you want to change the increment from .5to .25. Hit the I”
key (don't hit) and the Computer will now let you insert
material at the current position. Now hit 2 so the Display shows:

100 FOR I=1 TO 10 STEP .2__

You've made the necessary change, so hit SHIFT 4 to escape from
the Insert Subcommand. Now hit L key to display remainder of line

_and move cursor back to the begmnmg of the line:

100 FOR I=1 TO 10 STEP .25 : PRINT 1,142,143 : NEXT : PRINT"DONE"
100 .

You can also exit the Insert subcommand and save all changes by
hitting - This will return you to Command mode. -

" A (Cance! and Restart)

Moves the cursor back to the beginning of the program line and cancels
editing changes already made. For example, if you have added, deleted,
or changed something in a line, and you wish to go back to the
beginning of the line and cancel the changes already made: first hit
SHIFT 4 (to escape from any subcommand you may be executing);
then hit A, (The cursor will drop down to the next line, display the
line number and move to the first program character.

E (Save Changes and Exit)

Causes Computer to end editing and save all changes made. You
must be in Edit Mode, not executing any subcommand, when you

- hit E to end editing.

Q (Cancel and Exit)

Tells Computer to end editing and cancel all changes made in the
current editing session. If you’ve decided not to chang; the line, type
Q to cancel changes and leave Edit Mode.

9/4

~ ol

:: (’l’:u\'\ cneNd ulSCl’t) i f.

Tells Computer to delete remainder of line and lets you"insert
material at the current cuisor position. Hitting - will actually delete
a character from the line in this mode. For example, using line 100
listed above, enter the Edit Mode and space over to the last state-
ment, PRINT*DONE". Suppose you wish to delete this statement)
and insert an END statement. Display will show:

100 .-FOR I=1 TO 10 STEP .25 : PRINT I, 142,143 : NEXT : _

Now type H and then type END. Hit key. List the line:

100 FOR i=1 TO 10: STEP .25 : PRINT I, 142,143 : NEXT : END

should be displayed.
nD (Delete)

Tells Computer to delete the specified number n characters to the
right of the cursor. The deleted characters will be enclosed in
exclamation marks to show you which characters were affected.
For example, using line 100, space over to the PRINT command

. statement:

100 FOR I=1 TO 10: STEP .25 : .

Now type 19D. This tells the Compute} to delete 19 characters to
the right of the cursor. The Display should show something like this:

100 FOR I1=1 TO 10 : STEP.25: IPRINT 1,142,143 :1_

" When you list the complete line, you'll see that the PRI\‘T statement
has been deleted.

nC (Change) . -

Tells the Computer to let you change the specified number of charac-

_ ters beginning at the current cursor position. If you type C without a
preceding number, the Computer assumes you want to change one

" character. When you have entered n number of characters, the
Computer returns you to the Edit Mode (so you’re not in the nC
Subcommand). For example, using line 100, suppose you want to
change the final value of the FOR-NEXT loop, from *10” to *15”,
In the Edit Mode, space over to just before the “0” in “10™.

100 FOR I=1 TO 1_
Now type C. Computer will assume you want to change just one
character. Type 5, then hit L. When you list the line, you'll see that
the change has been made,
100 FOR I=1 TO 15 STEP .25 ; NEXT : END

would be the current line if you’ve followed the editing sequence in
this chapter.
Lo s

9/5

R T R i FEETEE R L T R < T

-

.HSC (Scarch)

Tells the Computer to search for the nth occurrence of the character
¢, and move the cursor to that position. It you don’t specify a value
for n. the Computer will search for the first occurrence of the speci-
fied character. If character ¢ is not found, cursor goes to the end of
the line. Note: The Computer only searches through characters to
the right of the cursor.

»
For example, using the current form of line 100, type EDIT 100
([E7T:3)and then hit 2s: . This tells the Computz,r to search

for the second occurrence of the colon character. stplay should
show:

100 FOR I=1 TO 15 STEP .25 : NEXT

You may now execute one of the subcommands beginning at the
current cursor position. For example, suppose you want to add the
-counter variable after the NEXT statement. Type I to enter the
Insert subcommand, then type the variable name, 1. That’s all you
want to insert, so hit SHIFT 4 to escape from the Insert subcom-
mand. The next time you list the lme it should appear as:

100 FOR I=1 TO 15 STEP .25 : NEXTl END_

nXXc (Search and “Kill”)

Tells the Computer to delete all characters up to the nth occurrence
of character ¢, and move the cursor to that position. For example,
using the current version of line 100, suppose we want to delcte the
entire line up to the END statement. Type EDIT 100 (),
and then type 2K: . This tells the Computer to delete all characters
up to the 2nd occurrence of the colon. Display should show:

100 IFORI=1 TO 15 STEP .25 : NEXT 11

The second colon still needs to be deleted, so type D . The Display
will now show: .

100 'FOR I1=1 TO 15 STEP .25 : NEXT II:1

Now hit and type LIST 100 ().

Line 100 should Jook something like this:

100 END

9/6

v -3

- m * s
10/Expansion Interface -
An Expansion Interface is available for the TRS-80
LEVEL Il Computer. This interface will allow the use
of additional Input/Output devices. There is also a
provision for adding RAM memory. The Interface will
allow four major additions to the TRS-80:
1 An additional cassette deck
2. A TRS-80 Line Printer :
3. Up to four Mini-Disks ~
4. Up to 48K bytes of RAM Memory
(32K in the Expansion Interface).

These devices are available from your Radio Shack
store or dealer. To set up the Expansion Interface and
any of the external devices, see the Expansion Interface
instructions.

.When the Expansion Interface is hooked up to the TRS-80, the Com-
puter assumes that a Mini-Disk is interfaced. The Mini Disk will allow
the use of additional commands and statements listed later. Even if
you don’t have a Mini Disk, the Computer will assume you do (because

- of the presence of the Disk Controller) and will try to input special

_instructions from the Disk Controller. Therefore, to use the Interface
without a Mini Disk, hold down the BREAK key as you turn on the
TRS-80. This will override the mini-disk mode and allow normal
LEVEL Il operation. Whenever you need to press the Reset button.
you must also hold down the BREAK key

Dual Cassettes

The use of two cassettes will allow a much more efficient and
convenient manner of updating data stored on tape. For example,.
1fyou have payroll data stored on tape, tiic miermation can be

read in one item at a time from cassette #1 then changed or added
and written out on cassette #2, one item at a time. The routine might
look like this:

10 INPUT #-1,A,B,C,D

20 PRINT "MAKE CORRECTIONS HERE: RETYPE LINE"
30 INPUT A,B,C,D

40 PRINT "THE LINE NOW READS:" A,B,C,D

50 PRINT “"STORING ON TAPE #2..."

60 PRINT #-2, A,B,C,D

- 70 GOTO 10

This is a very simple application; however, very powuful routines
can be constructed to allow input and output of data using two tapes
simultancously.

10/1

Commants can also be given the device numbers to allow you to
control the cassette decks. The cassette related commands are:
CLOAD, CSAVE, and CLOAD? When given the cassette numbers

(1 or 2) they will specify the cassette that is to operate. For example:

CLOAD #-1, A

(the position of the comma is very 1mportant) will load the file “A"
from cassette #1.

CSAVE #-2,"A" 3

will transfer the resident program to cassette tape #2.

See Chapter 2, CLOAD, CLOAD?, CSAVE.

Line Printer

" A line printer can give you a hard copy. of information generated by
your TRS-80. There are several commands whxch allow various line
printer applications. : :

* LLIST

= A Works like LIST but outputs to the Printer

LLIST Llst current program to printer.

LLIST 100~ Will list line 100 to the end of the program to the
line printer. :

LLIST 100-200 Will list line 100 through 200 to the line prmter.
LLisT . Lists current line to the line printer.

LLIST-100 Lists all lines up to and including line 100 to the line
printer.

- .See Chapter 2, LIST.
LPRINT

- This command or statement allows you to output information to
the Line Printer. For example, LPRINT A will list the value of A
to the line printer. LPRINT can also be used with all the options
available with PRINT except PRINT @.

Examples:

"LPRINT variable or e\'pressmn lists the variable or expression to the
line printer. :

LPRINT USING prints the information to the line pnnter using the
format specified.

LPRINT TAB will move the line printer carriage posmon to the right
as indicated by the TAB expression.

r - ' s

-

S etk " 3 R I W e e
A X SV LT N

WP e e B S T S VWA R T e b eyt Do

e

TR e O AT T

AR

" changed by POKEing the new number of lines into memory
... location 16424, - .

r

od

See Chapter 3, PRINT.

. . &
Codes o
Several codes are used to control the output of the line printer. Th‘e
codes and their functions are listed below. The CHRS function is

~ - used to call up these function codes. For example:

PRINT CHRS (10)
will generate a line feed.

'CODE FUNCTION

10 line feed with carriage return

11 line feed with carriage return

12 Move carriage to top of form (page)
13 . carriage return :

NOTE: At the end of a line, a line feed is automatically generated
unless a semi-colon is used at the end of the PRINT statement.

. The line printer will print 6 lines per inch and 66 lines per page. If

this format is not suitable, the number of lines per page can be

o ‘Ex:-:mple:

'POKE 16424,40 =~ ‘.

-This instructs the Line Printer to print 40 lines per page.

 Mini-Disks ~ (LEVEL I DISK BASIC)

The TRS-80 Mini Disk System is a small version of a floppy disk. The = -

disk allows vast file storage space and much quicker access time than
you get with tape storage. Disc 0 will contain about 80,000 bytes
of free space for files. Each additional disk will have 89,600 bytes of
file space. The disk system has its own set of commands which allow
manipulations of files and expanded abilities in file use. The TRS-80
Mini Disk System allows both sequential and random access. The

disks will also allow use of several additional BASIC commands and

functions: . ’

Commands: ,
CLOSE ' LSET -~ pUT
FIELD NAME .. RSET
GET - OPEN . MERGE

KiLL ' - PRINT - LOAD
: ' SAVE

10/3

-————T

i ey

/O Functions

CVvVD
cVi

CVs
EOF
LOC

" Additions to LEVEL II

Ten USR calls — USRQ through
USR9

&H (hex constants)
&0 (octal constants)

DEFUSR
LINE INPUT
M1DS (on left side of equation)

LOF
MKDS
MKIS
MKSS
DSKF

INSTR (performs function of
'INSTRING subroutine
— see Chapter 4)

TIMES (Date and 24-Hr.

Real-Time Clock.)
DEF FN (User Defined Functions)

For explanation of these commands functlons see the TRS 80

~ Disk Operating System Manual.

' Expansion of RA_M Memory

The TRS-80 Expansion Interface has provisions for adding extra
RAM memory. This is done by adding RAM memory chips. You
can add up to 32,768 additional bytes of memory. For price
information and installation, see your Radio Shack store or dealer.

10/4 -

T A it e g ey e+ 5 e

0
e

11/Saving Time and Space |

Most LEVEL I programs are faster and take up less

memory space than their LEVEL | counterparts.

But even with its inherently more efficient features, R
"LEVEL H can be further streamlined by following A ~
a few simple guidelines when constructing your

program. -

Saving Memory Space

1) When.your program is operating properly, delete all unnecessary
REM statements from your running version. -

2) Do not use unnecessary spaces between statements, 'operators,
etc. : : .

*3) When possible, use multiple-statement program lines (with a

~colon between each two statements). Each time you enter a new line
. number it costs you 5 bytes, ' : :

E o 4) Use integer variables whenever possible, for example,

. "FORI%=1TO 10

-Integers take only two bytes. Single precision takes 7 and double
precision takes 11 bytes. ‘ '

5) Using subroutines will save program space if the operation is

called from different places several times. If a routine is always called . -

. from the same place, use' unconditional branches (GOTO’s). Each
active GOSUB takes 6 bytes: a GOTO takes none at Run time, '

6) Structure your calculations so as to use as few parentheses as
possible (refer to Chapter 1, “Arithmetic Operators™). It takes

4 bytes to process parentheses. And since these operations inside
parentheses are done first, the result of each parenthetical
expression must be stored (this takes 12 bytes).

7) Dimension arrays sparingly. When you set up a matrix, the
Computer reserves 11 subscript addresses for each DIMension, even
if the space is not filled. Use the zero subscripted elements, since)
they are always available. '

8) Use DEF statements when you will be working with values

other than single precision (strings, integers and double precision). _

A DEF statement takes 6 bytes but this is made up for»fairly quickly
since you don’t need to use type declaration characters with the . - _
variable names. ’

11/1

a—

Speeding Up Exccution

The speed at which a program is processed will depend on the com-
plexity of the operations and the number of instructions. In most
simple programs, speed will not be a factor. It will seem as though
the answer is returned the moment you enter RUN. However,

as you begin writing longer and more intricate programs, speed will _

become a significant factor. Here are some suggestipns to guide you
in designing speedier programs. -

1) Delete all unnecessary lines in the program (REM statements,
etc.)

2). Combine multi-statement program lines when practical.

3)- Use variables rather than constants in operations (very
important). Your TRS-80 normally operates using floating decimal
point values. It takes a lot less time to access a variable than to con-
vert a constant to floating point representation. For example: if you
willuse 7 alotina program, define 7 as a variable (PI=3.14159)
and use the variable (P1) in the operations, '

4) Use POKE graphics. This can speed Up your graphics displays
by a factor of 6. :

5) Define the most commonly used variables first, When a variable
is defined it is located at the top of the variable table, The second
will be just below that. When variables are accessed, the table will be
searched to find the variable. Therefore, you will save time by
locating frequently used variables at the top of the table (by defining
them first). The Computer will not have to look as far to find them.

6) Use integer variables, especially in FOR-NEXT loops, when
possible. This is most important of all, -

11/2

Sy

pr

hamden

| -

LEVEL QI Reserved Words*

@ . - FIX , - ouT -
ABS _ FOR o PEEK *
AND S FRE - POINT
ASC L GET - =~ POKE

. ATN -~ GOSUB " .. . pog
CDBL GOoTO " PRINT

- CHRS - IF R PUT
CINT " - INKEYS - RANDOM

- CLEAR = INP T READ
CLOSE - INPUT REM
CLs . . INSTR ' RESET
CMD , COINT O . RESTORE
CONT ~ UKILL .. RESUME

. cos o LEFTS _ RETURN

.o JGSNG T LET . ~ RIGHTS
w . CVD LSET ~_RND
< CVI . - LEN - SAVE
s CVs L LINE o SET

DATA - . LIST . SGN

- DEFDBL . - -Loap . g _
DEFFN = - - Loc - SQR
DEFINT . - : LOF : STEP
DEFSNG . | LOG - STOP
DEFUSR . - . MEM . . STRINGS
DEFSTR - ‘ MERGE .. . STRS
DELETE . - MIps TAB
b MKDS -~ 0y
EDIT _ 'MKIs . "THEN
ELSE T MKSs - TIMES
END " NAME TROFF
. ERL) NEwW - TRON

" ERR - NEXT . - USING
ERROR NoT "~ USR
EXP o ON = . - yul
FIELD : OPEN _ VARPTR

b

* Many of these words have no function in LEVEL 11 BASIC: they are
reserved for use in LEVEL [I DISK BASIC, None of these words can
be used inside a variable name, :)

Alls

t. .
Program Limits and Memory Overhead
Ranges - : '
Integers —32708 10 +32767 inclusive
Single Precision - 1.701411E+38 to + 1.701411E+38 inclusive ,
Double Precision - 1.701411834544556E+38 to +1 .701411834544556E+38 inclusive
String Range:” Up to 255 characters . . >
)
Line Numbers Allowed: 0 to 65529 inclusive
Programi Line Length: Up to 255 characters
-Memory Overhead
Program lines require 5 bytes minimum. as follows:
Line Number - 2 bytes
Line Pointer — 2 bytes
Carriage Return — | byte
In addition. each reserved word, operator, variable name, special chamcter and constant
. character requires one byte.
Dynamic (RUN-time) Memory Allocation
Integer variables: ' » 5 bytes each -
(2 for value, 3 for variable name)
Single-precision variables: 7 bytes each
(4 for value, 3 for variable name)
Double-precision variables: A 11 bytes each
(8 for value, 3 for variable name) ’
String variubles: 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, | for each chardxter)
Array variables: 12 bytes minimum
(3 for variable name, 2 for size, 1 for number of dimensions,
2 for each dimension, and 2. 3.4 or 8 [depending on array type]
for cach element in the array)
Euch active FOR-NEXT loop requires 16 bytes.
Fach active (non-returned) GOSUB requires 6 bytes. ‘ "~
Each level of parentheses requires 4 bytes plus 12 bytes for each temporary value.
[-

A/16

ey

3
oy o

| B/LEVEL I Error Codef

CODE . " ABBREVIATION : ERROR

1 g . NF .. NEXT without FOR
2 . ' SN - ' ; ‘-Syntax error
3 " .RG '~ Return without GOSUB’

4 ' o> Outofdata
5 " . FC - ‘ : “ . lllegal function call
: _:.."v6 o :_ o . k'OV | '- o Overflow . -
EER | | oM o . o Out of memory
uL - * Undefined line

BS - . | < Subscfipt out of range =~ ..

" DD :. T : : :’Redi'mensiobhed array
/o , S . AR Division by zero

ID . o . lllégél di‘rect .

™ S :-.:j-'._Typé mismatch »
14 o i © 08 B o Out ofstrix;g space .
15 ST LS | - Stnng t:oo lbng .
16 L sr strmg rdrxﬁ@iju too éc;niplé*
17 | o - CN - | L : Cvavr;'t'cv'ontfr;ue |
s R T NoRESUME
T T e o Resume without error
20_' - - - UE | I Unprintable error
- 21 - . . . MO | . , Miss‘ing operand
2 CFD '. Badfiledata

1o
‘'~

L3 - Disk BASIC only

B/

\

! .
v —— ovpt———— s e -

P e s o — T—TT R T T

et o 2 LSRRI C IV

| - - ~——w

C/Control, Gmpﬁnics9 and ASCHH Codes

Control Codes: 1-31

Code . Function)
o7 .- None
8 | : Backspaces and erases -+ °
C : current character '
9 R None ‘
. - v i
10-13 . Carriage returns]
14 " Tumson cursor Ll
. j'
15 * Turns off cursor :
1622 ‘) None
23T R Converts to 32 character
DU " mode Mo
24 g ' - Backspace ~ Cursor
S 25 : : . Advance > Cursor
(| '~26. . Downward ¥ linefeed
27 Upward 4 linefeed
.28 Home, return cursor to .
o - . display position(0,0)
‘ -'_v; 29 A Move cursor to beginning
AN o of line '
o3 Erases to the end of the line
IR I i Clear to the end of the frame
1 .' !
- — - T "
RS C/l
s
‘WA»Y}M,WMW T R 2 1§ 7 S e A e . P . P e . T B A N 1.2 Bt sy B X E 23 A K

ASC! Character Codes 32-128

.49

- 52

Code Character Code Character
© 32 space 76 L
33 ! 77 M
34 " 78 N
35 # 79 - 0
30 S 80 P
37 % 81 Q
38 & 82 R
39) 83 S
40 (84 T
4])y 85 U
42 * - 86 Y
43 + 87 W
44) 88 X
45 - 89 Y
46 . 90 Z
.47 / 91 bor[°
. 48 0 92 Y 2
. 1 93 - A
S50 2 94 -
.51 3 95 Y
4 96-127 =« lower case for
53) codes 64-95
54 6 128 Space
55 7
56 8
57 9
gg . Graphics Codes 129-191
2? : You can examine these codes using:
>
2§ " 10 FOR X = 129 TO 191
A 20 PRINT X:PRINT CHRS(X),
64 @t 30 NEXT
65 A :
66 B Space Compression Codes:
67 C -
o8 5 192 TO 255
‘;8 I}i Code . . .Function
_711 g 192-255 Tabs for 0 TO 63
23 I spaces, respectively
74 J
75 K

i

C2

4]

DECIMAL

ADDRESS

{

HEXIDECIMAL

D/LEVEL II TRS-60 MEMORY MAP

0
12288

14302
14303
143C4
14305
14308
14312
14316
14336 .

16413

16421

0000 -

3000

37DE
37DF
37E0
37E1
37E4
37E8 .
37EC
3800 :

3C00 .

3FFF

4000

4012
4015

401D

4025

A\
A\

~ LEVEL II BASIC ROM

RESERVED

L
T

COMMUNICATION STATUS ADDRESS
COMMUNICATION DATA ADDRESS
INTERRUPT LATCH ADDRESS

DISK DRIVE SELECT LATCH ADDRESS

CASSETTE SELECT LATCH ADDRESS
LINE PRINTER ADDRESS ‘
FLOPPY DISK CONTROLLER ADDRESS

TRS-80 KEYBOARD

' MEMORY

TRS-80 CRT

VIDEO MEMORY

LEVEL IT BASIC FIXED RAM

VECTORS (RST'S | THROUGH 7)

|
A

I

 DCB +

KEYBOARD DEVICE CONTROL BLOCK

0=DCBTYPE
1 = DRIVER ADDRESS
2 = DRIVER ADDRESS

W-GGS

-

N B e WV B S N)

T
ISPLAY CONTROL BLOCK
0=DCBTYPE
"1 = DRIVER ADDRESS (LSB}
2 = DRIVER ADDRESS (MSB)
3 =CURSOR POS N (LSB)
4 = CURSOR POS N (MSB)
5 =CURSOR CHARACTER
6="D' i
i 7=0
LINE PRINTER CONTROL BLOCK
DCB + 0=DCBTYPE ‘
+ 1 = DRIVER ADDRESS (LSB)
.+ 2=DRIVER ADDRESS (MSB)
3= LINES/PAGE
4 = LINE COUNTER
5=9 '
6="P
=R’

VIDE
DCB

+ 4+ ++ O+ +++F
&)

+ 4+ + + +

Gl (RIS

F/Derived Functions o

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPOBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
_HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
. ‘SINE
INVERSE HYPERBOLIC
' COSINE
INVERSE HYPERBOLIC:
TANGENT -
INVERSE HYPERBOLIC
' SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

e

.
-

Function Expressed in Terms of Level Il Basic Functions '

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) = ATN(X/SQR(-X*X+1))

ARCCOS(X) = ~ATN(X/SQR(-X*X+1))+1.5708
ARCSEC(X) = ATN(SQR(X*X~))}*(SGN(X)-1)*1.5708
ARCCSC(X) = ATN(1/SQR(X*X~1))+(SGN(X)-1)*1.5708
ARCCOT(X) = - ATN (X)+1.5708 . ‘
SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X)+EXP(-X))/2 -
TANH(X) = - EXP(-X)/(EXP(X)+EXP(- X)*2+1
SECH(X) = 2/(EXP(X)+EXP(-X)) :

- CSCH(X) = 2/(EXP(X)-EXP(-X))

COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+ 1 -
ARGEINH(X) = LOG(X+SQR(X*X+1)) -
ARGCOSH(X) = LOG(X+SQR(X*X-1))
ARGTANH(X) = LOG((1+X)/(1-X))/2
ARGSECH(X) = LOG((SQR{-X*X+1)+1)/X)
ARGCSCH(X) = LOG((SGN(X)"SQR(X"’XH)+l)/X)
ARGCOTH(X) =VLOG((X+1 W(X=1)/2

Lseratn

E/1

— - e cwmesm—cemn . L

PR R B AT H 2

ar

yiot

BRI DT gl

i T e g

i,

sy
L

y
Tpm menge s wvey -

I e R

Ml SMO L Lot

— - 3
. v ° : I
¥- . G/Base Conversions %

Binary Number . ~ Octal Number Hexadecimal Number Decimal Number
00000000 000 00 0
00000001 001 01 1

00000010 002 02 : 2
00000011 003 03 ~ 3
00000100 004 v 04 4
00000101 005 - ‘ 05 S
00000110 006 06 6
00000111 007 07 7
00001000 010 . 08 8 .
00001001 011 09 9
00001010 012 0A 10
00001011 013 0B 11
00001100 014 oC 12
00001101 015 0D 13
00001110 016 OE 14
00001111 017 oF - 15
00010000 020 10 16
00011000 030 18 24
00100000 040 . 20 32
00101000 050 28 . 40
00110000 060 < 30 48
00111000 070 38 56
01000000 100 40 - 64
01001000 110 48 72

01010000 120 . 50 80
01011000 130 58 88
01100000 140 60 96
01101000 150 68 104
01110000 160 ' 70 112

i 01111000 170 78 - 120
. . 106000000 200 80 128
. 10001000 210 88 136
10010000 220 90 144
10011000 230 98 152
10100000 240 AO 160
10101000 250 A8 168
10110000 260 BO 176
10111000 270 B8 - 184
11000000 300 Co 192
11001000 310 ' C8 200
11010000 320 DO 208
11011000 330 D8 216
11100000 340 EO 1224
11101000 350 E8 232
11110000 - 360 FO 240
11111000 370 F8 248
11111001 371 N F9 249
11111010 372 ‘ FA 250
11ion 373 FB 251
11111100 374 FC 252
11111101 375 FD 253
11111110 376 FE 254

IRRRRERE 377 FF 255 :

Lase A, e e e L AR R

G/1

R anigd B e —0s S b G b - ” o tmp e L A

Y S

g

e e e« s

H/User Programs

Space-Ship Lander

This challenging program lets you simulate a landing sequence on any
of four planetary bodies: Earth, Moon, Mars, and the asteroid Vesta. -
Before each 10-sccond “burn” interval, you are given the following - *
information:

Elapsed Time (seconds)

Altitude (kilometers)

Velocity (kilometers/hour —

) negative amount indicates motion
away from planetary body)
Remaining Fuel (kilograms)

Using this information, you select a “burn rate” (kilograms of fuel/
second). For example, a 10 Kg/sec bum rate consumes 100 Kg during
the 10-second mandatory burn interval. Burns must be in the range
0-100 Kg/sec (over 100 Kg/sec would cause the “G" force to become

‘ too great.) -
Hints: - _ } :
— A negative velocity indicates you burned too much fuel and are A _ "

moving away from the planetary body.

— Fuel burns may include fractional parts (e.g., 15.5 Kg/sec)

— As you consume f{uel, the weight of the lander decreases. There-
fore subsequent burns will be increasingly effective.

~ Landing conditions are different for each planetary body because
each has its own particular gravity: Earth = 980 cm/sec? ;
Moon =162 cm/sec2 ; Mars = 372 cm/sec2 ; Vesta= 17.5 cm/sec?

— The up arrow § appears as a left bracket [in this printout,
Remember to enter it as an up arrow (for exponentiation).

Good luck, Commander!

160 CLS

110 PRINTG 20, " # % & LANDER # w #" -
120 FRINT . PRINT “TYPE 1 FOR EARTH, 2 FOR MOON, 3 FOR MRKS, 4 FOR VESTA"
146 INPUT X . ON X GOTO S0, 60@. 700, gop

145 (LS

147 FRINT® 926, RSS

150 G2 = G136

160 63 = SOR(G2) + 100 : G3sFIN(G3) : IF G3CATS THEN Gz=17S

170 G4 =3 G2 x 55 G4=FIX(G4> : IF G4<1n080 THEN G4=10000
180U 05 = G4 + (LOG(GLY 20 + 10300 :
130 AL = -6400 : A2 = SO00 : A3 = 15000 . A4 = 19
<00 B4 = A4 | BZ = A2 : N3 = G : N4 = G4
| A - et s sadin Y]
H/1
~— . ’

ez rvepn .
i Uales- LT3

e (T s
gL

. j' v.;.‘;..l‘.&-é:' m.‘s- v’;:gl’p-:p\—-yp.wr- -

.o
Cimd

X

)

t

t

% bamses

\

[3

3
; ~§ 209 PRINTE O ZELRFSED ALTITUDE YELOCITY FENHIHXHG' IHPUT FUEL"S -
i x 206 PRINTE o4 *TIME CKMD KM HRY FUEL BURN:(KG/SEC)“;

210 PRINT2 1204 > T TAB(LOY N3s TRB(247 B TAB(3Y N4 TRE(S3Y it 1WPUT F
20 1F F=9 goTO 289 ‘
~go IF FCO pR F>100 GoTa 220
270 T = naF o 1F T¢40 THEN Ba=T
om0 N4 = N4 < CFHEAD
og5 V=83
286 T1aT4+B4 . :
g 200 BS = (Ga+ (G2 * N3/ (RS * -23)) = C(F * GSY/CA3 * N4
£ . . nas B3 = B2 * (85 * BV » :
% . 293 N5=MH3 : ’
<00 N3 = N3* (((B3 + B2 ; FLY * B
205 B2=B3
=07 1F N340 GOTO 459
249 IF 14 ¢= 9 GOTO 400 : GOTO 210
212 Q=0+64 1F @ + 128 5 96@ THEN Q=832

-}
g
o g

P T

1 " 345 GOTO 265 - : |
1% Se FRINT " =727 [LLERAL FUEL BURN ~ suntet ~=TRY AGAIN <O <o 1o@>" : 00TO 219
409 V2 =

sprR (B2l2 * N3 o+ G2 * 5650) - PRINT “QUT OF FUEL AT" Ti ifSECONDS“
410 V3 ags(veY * 100988 7/ 3600 . '
428 T4 = 11 + LOG V3 * NI * 16000 7 G1Y
470 GOTO 1009 . .
- 4508 V2 * QR (AES (NS /(26 * BSYYY * (26 * BSY * yi : GOTO 1089
?*:.466 TL=T1-(10—84) _ : - .
- 5pR Gl ® 2980. 7 fs = 6371 ¢ R5=“EHRTH“ : 0T0445 o
600 GL = ag2 . RS = 1738 As="lMO0N" - GOTO 44w : *
708 GL = 374 . RS 7 3380 - As="MARS" - GOTO 145
8 Gl = 17.% as = 199 ° R@="VESTR“ . GOTO 145
41000 PRINT PRINT "YOU HAY

u

1053 1F V254399 PRINT "gORED A HOLE INTO TAE PLANET" - GOTO S0
1109 1F y2<y PRINT "NICE TOUCH-—VER? Good" - GOTD 5098
9 1IF V249 PRINT "NOT 100 BRD" ° goTO 5808

! . 5000
4440 1F 112430 PRINT meoy WILL HOT BE ABLE TO TRKE OFF" GOTO 50809 R
1150 17 2445 PRINT "YOU ARE IHJURED» THE LANDER 15 ON FIRE" .. GOTO 5029

5009 PRINT WYELOCITY 1 JMPRCT * * " TAB(40Y; fBSIV2) ; "KH/HRT
5019 PRINT "ELAPSED TIME » * * x o " TﬁB(48)i'T1 5"SECONDS“'

-—-—-—————.———_.———.—_—_—_.-_—-.—-.-—-—————-—_-_.-_.___—_———‘.-_.-———

Customer ln’iormaﬁon

[4

. This program allows you (or your customers) 10 store information in
© a file for future reference. It stores Name, Address and Phone Number;
the file can pe recalled, modified, ¢S, by specifying the desired
action using the “Menu” (Table of ¢commands)-

- - ——— . ..

B T P

= : . -

This would be a handy way tu cicale d diwiniiig phone list.

10 CLEFR 1000 :©LS :DIM N$(S8) :DIM A$(58) :DIM P$(58)

54 (LS PRINID LA, s % MENU * *" :PRINT :PRINT

39 PRINT "TO BUILD A FILE TYPE 1

48 PRINT "TD SEE THE ENTIRE FILE TYPE 2

5@ PRINT "TO SEE AN INDIVIDUAL NRME TYPE 3

€ FRINT "TO MAKE CORRECTIONS TYPE 4 ‘

2 FRINT "TO SAYE THE CURRENT FILE ON TAPE TYPE S .

g PRINT "TO INPUT A FILE FROM TAPE TYPE €

ap INPUT @ -ON Q GOTO 400, 209, 389, 4068, 528, £20

100 INPUT"WHEN READY, HIT ENTER (TO CLOSE THE FILE TYPE 9999 FOR NAMED"¥

119 FCR I=1 T0O S8 :CLS :PRINT"ENTER YOUR NAME (LAST FIRST, NO COMMAS PLERSE) -
2> PRINT"THEN RIT THE ‘ENTER’ KEY" ; : INPUT N$CI)

115 IF N$(I1)="9999" THEN P1=1 :G0OT0158

129 INPUT"ENTER YOUR RDDRESS (NO COMMAS>"; A$CI)

130 INPUT"ENTER YOUR PHONE # *; P$(I>

135 IF FRE(X3) < 108 GOT0150 :

148 NEXT .

150 PRINT"FILE CLOSED --" :INPUT"TO SEE THE MENU, HIT ENTER™) X
168 GOT020 B’ .
208 CLS :FOR I=1 TO P1 :PRINT N$CI>, R$CI), P$CI> :NEXT

218 INPUT"TO SEE THE MENU, HIT ENTER"; X :GOTO20

309 CLS :INPUT"ENTER THE NAME, LAST FIRST (NO CONMMAS)"; N$

218 FOR I=1 TO P1i :IF N5¢I>=N$ THEN330 -

- 313 NEXT

328 PRINT"NRME NOT IN FILE™ :GOT(Q348

330 PRINT N$CI), ASCI), PSCDD i ‘ '

340 PRINT :PRINT"FOR ANOTHER NRME TYPE 1, OTHERWISE 8"; :INPUT X

350 IF X=1 GOTO3C@ ELSE20) B :
400 CLS :PRINT"ENTER THE NAME FOR THE LINE YOU WISH TO CHRNGE (NO COMMRS)™
485 INFUT NS ‘ o :

" 410 FOR 1=1 TO P1 :IF N$=N3$(I) GOTO438

415 NEXT

- 420 PRINT"NAME NOT IN FILE" :G0T0468

430 PRINT"ENTER THE CORRECTED INFO. : NAME, RDDRESS,.PHONE"

448 INPUT N3(DD, R$CI), P3(I)

458 PRINT"THE LINE NOW READS :" :PRINT N8C1), ARS$(I), PSCDD

469 INPUT"FOR ANOTHER CORRECTION TYPE 1, OTHERWISE 0"; X

470 IF X=1 GOT0480 :

423 GOTO20 , :

569 CLS :INPUT "MAKE PREPARATIONS FOR CASSETTE, WHEN RERDY HIT ENTER": X
519 PRINT"COPYING...") '
520 PRINT #-1, P1i

529 FOR 1=1 TO P1 :PRINT #-1, N$<I), ASCI), P$CI> :NEXT

549 PRINT"COMPLETE -- NOTE TRPE LOCATION®

550 INPUT"TO SEE THE MENU, HIT ENTER"; X :G0OT029

€668 CLS :INPUT"WHEN RERDY, HIT ENTER"; X

619 PRINT"INPUTING ... :

623 INPUT -1, P1 : !

€30 FOR I=1 TO P1 :INPUT #-1, N5CI), R$(I), P$(I) :NEXT

640 PRINT"COMPLETE":INPUT"TO SEE MENU, HIT ENTER"; X :G0OT028

e L ACER e i

H/3

INT 5 PR

\
s ..

R

ity

. ¥

. o ety

Lt [
CL A1’ A S S, S At 8 % AR e i o A Armtnn e notne

DR X O

-

- ; - " od

Triangle Computation with Graphics

This program illustrates the use of math tunctions as well as
graphics. It's a preat way to investigate the geometry of triangles
(might be good for high-school students). (Note: up arrow 4 = |
in this printout.) ' '
10 CLS

109
119
120
128’

140

15
2029
219
220
229
230
235
2409
25a
260
270

- 282

304
210
320

: 225
T+ 330

340
350
3¢
400
419
420
425
420
448
459
460
470
500
510
520
52%
S20
532
S22
574
535
527
40

cc

5¢5
550

PRINT"THIS PROGPAM CRLCULATES THE AREA OF R TRIANGLE

PRINT"GIVEN 3 PARAMETERS AND DRAMWS THE TRIANGLE TO SCALE.

PRINT:PRINT"FOR 3 SIDES TYPE: 555
PRINT"FOR 1 SIDE AND 2 ANGLES TYPE: ASA
INFUT RS :IF A3="SRS" GOSUB3G8 :
IF R$="RSA" GOSUB4086 !
’8SS '
PRINT"ENTER 3 SIDES,
INPUT L1, L2, L3

IF L2>L1 OR L3>L1 PRINT
S=(Li+L2+L3)Y/2

IF S <= L1 PRINT " * * % NOT fi TRIANGLE % o ="
¥3 = 2 * SAR(S * (5-L2) * (S~L1) * (S-L33> /7 L1
A = ¥3/L2 :A = ATNC R / SOGR(-A * R+4))

%3 = COSCAY * L2 :

AR = (L1 * ¥Y3) /2

GOT0S00

‘SRS

PRINT"ENTER 2 SIDES AND 1 ANGLE: AB.
INPUT L1, L2, T

T = (T = 3.14159> / 180

y2 = L2 * SINCKTD

%3 = COS(TY = L2

AR = (L1 * ¥3)> /2

GOT0Se08

‘ASK

PRINT"ENTER 2 fINGLES AND 1 SIDE: THETRL, THETA2, AB:
INPUT T4, T2, L2

(LONGEST SIDE FIRST):

wa w % LLONGEST FIRST PLEASE ...

nonu

. PRINT :

~

FOR 2 SIDES AND 4 ANGLE TYPE: SAS,

» . PRINT : GOTD 218

GOTO 219

RC, THETA:(LRRGEST SIDE FIRST)

T1
¥Y3
B1
B2
L1
AR

CLS

vC
Vs

x

4 unun

(T4 * 3.14459) / 180 :
L2 * SINCTL
COS(T1> = L2
¥3 /7 TAN(T2)
B1 + B2 :X3 = B1
(L2 * Y3 7 2
F=1 :
(3. 14459 = (L1 * F — X3 * F)

(3. 14159 * (X3 * F) * (Y3 * F) (2> 73 :

IF F=6 GOTGe18

IF L4>5@ OR Y3>38 OR L2>58 THEN GOsuB7@e . s SR o

S1=YX / X3

IF INTCA3)

€2=y3 / (X3 - L1)
& THEN1iv®@

T2 = (T2 = 3.14159) / 189

* (Y3« F>[2) /3
VT = VC + VS

IF INTCAZD INTCLLY THENiD@A

IF %3¢ THEN1299

IF %3>»L1 THEN1199

IF ¥3=L2 THEN10BY

FOR ¥=20 TO L1 % 2420 STEP 2 : SET (Y, Y3+5)
FOR %=0 TO X3 : SET (X * 2+2@8 , 51 *
FOR %=X3 70 L1 :
PRINT@ 64 = INTC((Y3+5) f 3) + 6% “A €B,8)" ; TRBWLY i

2 : NEXT
(X3-X) +5) @ NEXT

CET (X » 24208 , Y3+ (52 * (L1i-X) +5)2

NEXT
llB(";

L1 * F

ll' e).

| SN s

~ e s opaak sl

H/4

NIV B
.

Cv ~

€00 PRINTE (X3 + 20) 7/ 2, "C (" X3 * F ;" " =93 *« F ;") ;

619 PRINT® 832, "ARERA ="; AR ;" SQ UNITS" ; -

€28 PRINTOG 896, "THE VOLUME OF THE SOLID CRERTED BY REVOLVING THE TRIANGLE "
625 PRINT"ABOUT THE X AXIS (LINE AB) =";VT; "CUBIC UNITS";

€30 FRINT@ 768. "= ;: INPUT "TO RUN AGARIN, TYPE 1"; B6 : IF B6=1 THEN1®

649 STOP : GOTO10

700 IF L1<100 THEN F=2 : GOTOTSO '

740 IF L1<158 THEN F=3 : GOTO7S0

720 IF L1<200 THEN F=4 : GOTO7S9

728 IF L1<250 THEN F=5 : GOTO?S@

740 PRINT "SORRY., SCALE TUO LRARGE TO BE DRAWN" ;: F=6 : GOT0510

750 Li=L1/F @ YisVASF @ Y2=Y2/F © Y3=Y3/F 1 XA=X1/F : X2=X2/F . X3=X3/F

769 RETURN : :

1000 FOR ¥Y=5 TO Y3+5 : SET(X3 % 2 + 28 , ¥> : NEXT : GOTOS40

1180 FOR ¥=5 TO Y345 : SETC20 , ¥)> : NEXT : GOT0S48

1199 IF X3>127 GOSUB?GO '

1200 FOR X=L1 TO X3 : SET(X = 2 + 28 , Y3 + (52 * (L1-X) +5)) : NEXT : GOT0S48
1299 IF X3 < ~108 GOSUB708

1390 FOR X=X3-TO O : SET(X * 2 + 20 , Y3+ (S1 = (9-X) +5)> : NEXT : GOT0540°

Target Practice

This program uses the INKEYS function to simulate one of the
popular *video games”. Notice how few lines are required. This
program could easily be *“‘dressed up™ - let the user choose a
Fast Target, Slow Target: keep score, print special messages, etc.

To change the speed of the target, change line 40 as follows:
instead of "RND(10)/10", use ““RND(0)*S1”". For a slow-moving
target, let S1 be small (less than 1); for a faster target, let S1 be
greater than 1. S1 should not exceed 1.5 or the target will advance
to the next line.

CLS.PRINT : PRINT CHR$£(23) ; "HIT ‘2’ KEY TO RIM LEFT. ®

1

2 FRINT “"HIT “/¢ KEY TO AIM RIGHT.

2 FRINT "HIT SPACE EBAR TO FIRE. "

4 FOR I = 1 TO SGG3 : NESXT ’ ‘ .
10 CLS : CA=5%28 : I=1 : PRINT @ CA, "*" ; : PRINT @ 931, “xkx";
<o F=@ . S L
I8 IF 1 2= 1% FRINT G 124, " Yi o 1=1

40 FRINT @ 64 + 1 % 4, "; 1 I=I+RNDC10>/40 : PRINTG 64+I%4, " ==> *;
S IF F=0Q THEN 200 : : - 8
60 FESETIMA. MYY @ MA=MA-MD : MY=MY-8 : IF MxX{=86 QR MXD=127 THEN20O
7O IF MY»2 SET(MX, MYY : GOTO 30 ST

20 IF ABSC 148-MX>S4 THEN 20 . ' .

I8 FOR J=1 TO 6 : PRINT® 64+4%I, "sodobx™; : FOR K=1 TO 56 : NEXT

95 PRINTG 64+dx], * " . FOR K=1 TO S8 : NEXT K, J S

180 GOTO1w

<0l Y$=1NLEYS

205 IF F=1 STOF !

210 IF Y32 THEN 256

H/s5

|
|
i
i
1
i
i
i
!

P

hatic

>
[i i
ol R -

s

e i S p il 4

BT ST b SR T

£ MRSy ot A rief Senl Jhid Dl PG 49 VTR T 9T 4 4

Lo

v

L3NNI P e 1 Y

LTI

v ——

IS Ry

R I

L =
220 IF CA < 922 THEN 38
230 PRINT® CAR. " "; : CA=CA-1 : GOTO 289
250 IF YE<OUO" THEN 306
260 IF CAY934 THEN 30
‘270 PRINTE® CR, " ") : CR=CA+1
250 PRINTG CR, "+", : GOT030
300 IF ¥3<>" " THEN 38 .
(310 F=1 : MD=923-CA : MY=4@ : MX=64~3#MD : SETCMK, MY) : GOTO39
+ 341 END >

- - A M . m G am - M Mes - Gt e - - e M M e W - R e e G W G TR e G En G e W S =D e e

Ready-Aim-Fire (Bouncing Dot Revisited)

. Remember the LEVEL I Bouncing Dot program? This program takes
that idea and turns it into a game for one or more players by means
" -of the INKEYS function. The object is to enter the correct 3-digit
A combination that will cause your missile to destroy the bouncing
. A dot. (The 3-digit number corresponds to the X-axis of the display
: and therefore should be'in the range 001 to 126 — and be sure to
enter leading zeros for 1- or 2-digit numbers.)

o o - The Computer always takes the first shot; then it’ s Player Number

1's turn.

S DIM NS v pd

%1 "4ST NAMES :*

6 CLS : INPUT "ENTER THE NO. OF PLAYERS"; %1 PRINT"ENTER";
7 FOR XI=1 TO X1 : INPUT N$(XID> : NEXT : XI=1 ' :
10 CLS

20 FOR M=Q TQ 127 : SET¢M.9) : SET(M, 4?) : NEXT

I0 FOR M=d TO 47 : SETCA, M) : SETC127,M) : NEXT

25 FOR X=1 TO 121 STEP 48 : RESET(X, 8) : NEXT

43 PARNDNOM : Y= RNDC4B) +4 : X= RND(119) +4

50 D=t : Q=1 : 2=64

68 RESET ¢2,¥-D) : RESET (X- Q * 4, 24)

78 SETCZ,Y) : SETIX, 24> : GOSUB 528

80 Y=Y+D : X=X+Q

99 IF X=123 (R X=4 THEN GOSUB 728

168 IF v=47 THEN 128 , ~

195 IF ¥=0 GOSUB 980 : : . .

118 IF ¥ <O -1 OR X <O -1 THEN €@

120 ¥= ¥- 2 » D : D= -D : GOTO €o

589 IF X=2 OR X=0+42 OR X=2 #'Q+Z OR'X=3 # Q+2 OR X=Q * 4+2 THEN IF y=24
510 IF ¥=23 OR Y=24 OR Y=25 THEN IF X=2 GOSUB sea

52 RETURN , :

666 X=1 : ,) —_— '
618 FUR 2=1 TO S0 : PRINTG S50, "HIT !''"; ¢ NEXT '
208 FOR 2=1 TO 25 : PRINTG 5508, " M5 NEXT

630 X=X+1 : IF %<5 GOTO 618 : :

642 GOTO 2009 R

7893 X=X-2 % Q : Q= -Q : RETURN .7, .

980 T35 = INKEYS : RS = "" : B =3"" : C$ = "*

1020 R$= INKEYS
1695 PRINTE @,

IF LEN(RS) = 38" THEN 10@8
HS; .

DSUB €80

L

ek s cd

H/6

R L E T v,

cerem e i eeme— - -

LS .-

-
s

P

T D Y ey Y

e e -
. -
e o

A€ A e,

2. e

B I

AR RGN RGP S e i S e TR B
p o MRDPTRLY .

2N

e SOW

\.

i910
w15
pal
1825
1839
1033

- 1035

1049
1100
1119
2000
2319
2017
2029
2839
2835
2040
2042
2045
2059
2660
JBES5
2879
2115

Bs= [NKEYS - IF LEN(B$>=8 THEN 1010

FRINTG L1, BS,
C$= INKEYS . IF LENCC$)=9 THEN 1620

FRINTR 2, CS$:
PESET(Z, 1> © X$= A$+B$+CS : Z=VAL(X$) : IF 2>126 GOTO 1198

PN=PX+1

GOTC129

RETLRN)

FOR X=1 TO SA : PRINT@ ?0. "TOO LRRGE. TRY RGRIN" : NEXT

PRINT@ 78, " * . 2=1 : GOTO Auvwad b

IF PX=0 GOSUE 3810

CLS : PRINT " ok ok " NSC(XIY ;% % % %" : PRINT : PRINT
PR(XI) = PR+PX(KI) : PH(XI) = PH(XI)+1

PRINT, "SHITS HITS PERCENTRGE"

PRINT : PRINT “"THIS ROUND "; TRB(4?7) PX; TRB(ZBX“1Y; TRB(42) (1/PX) * 109

IFPX(1)=ATHENPX(1)=1

FRINT : PRINT "TOTAL *; TAB(4?)-PX(XID;

PRINT TAB(28) PH(XI)>; TAB(42)> (PH(XI) / PX(XI)) » 189
FOR X=1 TO 2508 : NEXT

AI=XI+1

IF XI>X1 THEN XI=1
PX=0

GOTO18

IF PX=8 GOSUB 2008

3800 PRINT@ O, "WHAT LUCK !!!" : PX=1 : RETURN

ey

- H[7

- ———— o s

———————- e et A

D T U WVP USRI

FIRST EDITION — 1978

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial con-
tent, in any manner, is prohibited. No patent
liability is assumed with respect to the use of the
information contained herein. While every pre-
caution has been taken in the preparation of this
book, the publisher assumes no responsibility
for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the
information contained herein.

D Copvright Jv7s, Radie Shack,
A Diviston ot Tandv Corporation,
Rort Worth Texas 76102 U S.A.

Printed in the United States of America

